Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
ACS Biomater Sci Eng ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830819

RESUMO

Nanofiber scaffolds have gained significant attention in the field of bone tissue engineering. Electrospinning, a straightforward and efficient technique for producing nanofibers, has been extensively researched. When used in bone tissue engineering scaffolds, electrospun nanofibers with suitable surface properties promote new bone tissue growth and enhance cell adhesion. Recent advancements in electrospinning technology have provided innovative approaches for scaffold fabrication in bone tissue engineering. This review comprehensively examines the utilization of electrospun nanofibers in bone tissue engineering scaffolds and evaluates the relevant literature. The review begins by presenting the fundamental principles and methodologies of electrospinning. It then discusses various materials used in the production of electrospun nanofiber scaffolds for bone tissue engineering, including natural and synthetic polymers, as well as certain inorganic materials. The challenges associated with these materials are also described. The review focuses on novel electrospinning techniques for scaffold construction in bone tissue engineering, such as multilayer nanofibers, multifluid electrospinning, and the integration of electrospinning with other methods. Recent advancements in electrospinning technology have enabled the fabrication of precisely aligned nanofiber scaffolds with nanoscale architectures. These innovative methods also facilitate the fabrication of biomimetic structures, wherein bioactive substances can be incorporated and released in a controlled manner for drug delivery purposes. Moreover, they address issues encountered with traditional electrospun nanofibers, such as mechanical characteristics and biocompatibility. Consequently, the development and implementation of novel electrospinning technologies have revolutionized scaffold fabrication for bone tissue engineering.

2.
Vaccines (Basel) ; 12(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793763

RESUMO

Influenza virus is one of the main pathogens causing respiratory diseases in humans. Vaccines are the most effective ways to prevent viral diseases. However, the limited protective efficacy of current influenza vaccines highlights the importance of novel, safe, and effective universal influenza vaccines. With the progress of the COVID-19 pandemic, live-attenuated vaccines delivered through respiratory mucosa have shown robustly protective efficacy. How to obtain a safe and effective live-attenuated vaccine has become a major challenge. Herein, using the influenza virus as a model, we have established a strategy to quickly obtain a live-attenuated vaccine by mutating the cleavage site of the influenza virus. This mutated influenza virus can be specifically cleaved by chymotrypsin. It has similar biological characteristics to the original strain in vitro, but the safety is improved by at least 100 times in mice. It can effectively protect against lethal doses of both homologous H1N1 and heterologous H5N1 viruses post mucosal administration, confirming that the vaccine generated by this strategy has good safety and broad-spectrum protective activities. Therefore, this study can provide valuable insights for the development of attenuated vaccines for respiratory viruses or other viruses with cleavage sites.

3.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2210-2221, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812236

RESUMO

In this study, J774A.1 macrophages stimulated by lipopolysaccharide(LPS) and adenosine triphosphate(ATP) were used to establish an in vitro model of pyroptosis, and the intervention mechanism of free total rhubarb anthraquinones(FTRAs) on pyroptosis was investigated. J774A.1 macrophages were cultured in vitro, and the experiment was assigned to the control group and groups with different concentrations of LPS(0.25, 0.5, and 1 µg·mL~(-1)) and ATP(1.25, 2.5, and 5 mmol·L~(-1)). An in vitro model of macrophage pyroptosis was established by detecting cell viability through CCK-8, propidium iodide(PI) apoptotic cell staining, lactate dehydrogenase(LDH), interleukin(IL)-18, and tumor necrosis factor(TNF)-α release. Then, J774A.1 macrophages were randomly divided into six groups: blank control group, LPS+ATP group, high-dose FTRA group, and low, medium, and high-dose FTRA pre-protection group. The phenotypic characteristics and key indicators of pyroptosis were detected as the basis for evaluating the effect of FTRAs on pyroptosis induced by LPS and ATP. Western blot and RT-PCR were used to detect the expression levels of protein and mRNA related to the pyroptosis pathway in caspase-1/11 and elucidate the molecular mechanism of the anti-pyroptosis effect. The results showed that the stimulation condition of 0.50 µg·mL~(-1) LPS+5.00 mmol·L~(-1) ATP was the most effective in the in vitro model of macrophage pyroptosis. FTRAs pre-protected cells for 24 h and then can increase cell viability under pyroptosis conditions, alleviate cell damage, lower the positive rate of PI staining, and reduce the release of LDH, IL-18, and TNF-α. FTRAs were able to significantly inhibit the activation of GSDMD proteins and significantly down-regulate the protein expression of the pyroptosis pathway signature molecules, TLR4, NLRP3, cleaved-caspase-1, and cleaved-caspase-11, but they had no significant effect on ASC proteins. FTRAs were also able to significantly inhibit the mRNA expression of caspase-1, caspase-11, and GSDMD. These results indicate that FTRAs have an inhibitory effect on the pyroptosis model induced by LPS and ATP and play an anti-pyroptosis effect by regulating classical and non-classical pyroptosis signaling pathways and reducing the production of inflammatory cytokines.


Assuntos
Antraquinonas , Macrófagos , Piroptose , Rheum , Piroptose/efeitos dos fármacos , Rheum/química , Animais , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/citologia , Antraquinonas/farmacologia , Antraquinonas/química , Linhagem Celular , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Trifosfato de Adenosina/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Interleucina-18/genética , Interleucina-18/metabolismo
4.
Nat Med ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740994

RESUMO

Emotional distress (ED), commonly characterized by symptoms of depression and/or anxiety, is prevalent in patients with cancer. Preclinical studies suggest that ED can impair antitumor immune responses, but few clinical studies have explored its relationship with response to immune checkpoint inhibitors (ICIs). Here we report results from cohort 1 of the prospective observational STRESS-LUNG study, which investigated the association between ED and clinical efficacy of first-line treatment of ICIs in patients with advanced non-small-cell lung cancer. ED was assessed by Patient Health Questionnaire-9 and Generalized Anxiety Disorder 7-item scale. The study included 227 patients with 111 (48.9%) exhibiting ED who presented depression (Patient Health Questionnaire-9 score ≥5) and/or anxiety (Generalized Anxiety Disorder 7-item score ≥5) symptoms at baseline. On the primary endpoint analysis, patients with baseline ED exhibited a significantly shorter median progression-free survival compared with those without ED (7.9 months versus 15.5 months, hazard ratio 1.73, 95% confidence interval 1.23 to 2.43, P = 0.002). On the secondary endpoint analysis, ED was associated with lower objective response rate (46.8% versus 62.1%, odds ratio 0.54, P = 0.022), reduced 2-year overall survival rate of 46.5% versus 64.9% (hazard ratio for death 1.82, 95% confidence interval 1.12 to 2.97, P = 0.016) and detriments in quality of life. The exploratory analysis indicated that the ED group showed elevated blood cortisol levels, which was associated with adverse survival outcomes. This study suggests that there is an association between ED and worse clinical outcomes in patients with advanced non-small-cell lung cancer treated with ICIs, highlighting the potential significance of addressing ED in cancer management. ClinicalTrials.gov registration: NCT05477979 .

5.
Membranes (Basel) ; 14(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786930

RESUMO

The skin, as the largest organ, serves as a protective barrier against external stimuli. However, when the skin is injured, wound healing becomes a complex process influenced by physiological conditions, bacterial infections, and inflammation. To improve the process of wound healing, a variety of wound dressings with antibacterial qualities have been created. Electrospun nanofibers have gained significant attention in wound dressing research due to their large specific surface area and unique structure. One interesting method for creating Janus-structured nanofibers is side-by-side electrospinning. This work used side-by-side electrospinning to make cellulose acetate/gelatin Janus nanofibers. Curcumin and zinc oxide nanoparticles were added to these nanofibers. We studied Janus nanofibers' physicochemical characteristics and abilities to regulate small-molecule medication release. Janus nanofibers coated with zinc oxide nanoparticles and curcumin were also tested for antibacterial activity. The Janus nanofibers with specified physicochemical characteristics were successfully fabricated. Nanofibers released small-molecule medicines in a controlled manner. Additionally, the Janus nanofibers loaded with curcumin exhibited excellent antibacterial capabilities. This research contributes to the development of advanced wound dressings for promoting wound healing and combating bacterial infections.

7.
FASEB J ; 38(8): e23618, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38651689

RESUMO

Intestinal barrier dysfunction usually occurred in acute pancreatitis (AP) but the mechanism remains unclear. In this study, RNA sequencing of ileum in L-arginine-induced AP mice demonstrated that phosphoenolpyruvate kinase 1 (Pck1) was significantly up-regulated. Increased Pck1 expression in intestinal epithelial cells (IECs) was further validated in ileum of AP mice and duodenum of AP patients. In AP mice, level of Pck1 was positively correlated with pancreatic and ileal histopathological scores, serum amylase activity, and intestinal permeability (serum diamine oxidase (DAO), D-lactate, and endotoxin). In AP patients, level of Pck1 had a positive correlation with Ranson scores, white blood cell count and C-reactive protein. Inhibition of Pck1 by 3-Mercaptopicolinic acid hydrochloride (3-MPA) alleviated pancreatic and ileal injuries in AP mice. AP + 3-MPA mice showed improved intestinal permeability, including less epithelial apoptosis, increased tight junction proteins (TJPs) expression, decreased serum DAO, D-lactate, endotoxin, and FITC-Dextran levels, and reduced bacteria translocation. Lysozyme secreted by Paneth cells and mucin2 (MUC2) secretion in goblet cells were also partly restored in AP + 3-MPA mice. Meanwhile, inhibition of Pck1 improved intestinal immune response during AP, including elevation of M2/M1 macrophages ratio and secretory immunoglobulin A (sIgA) and reduction in neutrophils infiltration. In vitro, administration of 3-MPA dramatically ameliorated inflammation and injuries of epithelial cells in enteroids treated by LPS. In conclusion, inhibition of Pck1 in IECs might alleviate AP via modulating intestinal homeostasis.


Assuntos
Células Epiteliais , Mucosa Intestinal , Pancreatite , Fosfoenolpiruvato Carboxiquinase (GTP) , Animais , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Homeostase , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/tratamento farmacológico , Fosfoenolpiruvato Carboxiquinase (GTP)/antagonistas & inibidores , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Ácidos Picolínicos/farmacologia
8.
Front Cardiovasc Med ; 11: 1375400, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596692

RESUMO

Diabetic cardiomyopathy (DCM), one of the most serious complications of diabetes mellitus, has become recognized as a cardiometabolic disease. In normoxic conditions, the majority of the ATP production (>95%) required for heart beating comes from mitochondrial oxidative phosphorylation of fatty acids (FAs) and glucose, with the remaining portion coming from a variety of sources, including fructose, lactate, ketone bodies (KB) and branched chain amino acids (BCAA). Increased FA intake and decreased utilization of glucose and lactic acid were observed in the diabetic hearts of animal models and diabetic patients. Moreover, the polyol pathway is activated, and fructose metabolism is enhanced. The use of ketones as energy sources in human diabetic hearts also increases significantly. Furthermore, elevated BCAA levels and impaired BCAA metabolism were observed in the hearts of diabetic mice and patients. The shift in energy substrate preference in diabetic hearts results in increased oxygen consumption and impaired oxidative phosphorylation, leading to diabetic cardiomyopathy. However, the precise mechanisms by which impaired myocardial metabolic alterations result in diabetes mellitus cardiac disease are not fully understood. Therefore, this review focuses on the molecular mechanisms involved in alterations of myocardial energy metabolism. It not only adds more molecular targets for the diagnosis and treatment, but also provides an experimental foundation for screening novel therapeutic agents for diabetic cardiomyopathy.

9.
Plants (Basel) ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475538

RESUMO

Whitfordiodendron filipes var. tomentosum is an endemic plant in China. There have been no chemical or pharmacological studies of this plant reported before. In the current research, eight triterpenes and two steroids were obtained. Their structures were established by the analysis of NMR data and comparison with those reported in the literature. These ten structurally diverse compounds comprised five distinct carbon frameworks with different functionalities. The chemotaxonomic significance of these secondary metabolites was discussed, disclosing the common components between the variant W. filipes var. tomentosum and the species W. filipe. Evaluation of α-glucosidase inhibitory activities of these isolates disclosed that compounds 1, 2, 4, and 6 exhibited significant α-glucosidase inhibitory activities (IC50 = 16.6-19.2 µM), which were close in value to the positive control acarbose (IC50 = 11.5 µM). Moreover, the binding modes between the biologically active compounds 1, 2, 4, and 6 and the α-glucosidase protein were preliminarily studied using molecular docking. This study not only showed the chemical and biological profile of the plant W. filipes var. tomentosum but also revealed that these components could be developed as hypoglycemic lead compounds.

10.
J Med Virol ; 96(4): e29568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38549430

RESUMO

The global incidence rate of kidney cancer (KC) has been steadily increasing over the past 30 years. With the aging global population, kidney cancer has become an escalating concern that necessitates vigilant surveillance. Nowadays, surgical intervention remains the optimal therapeutic approach for kidney cancer, while the availability of efficacious treatments for advanced tumors remains limited. Oncolytic viruses, an emerging form of immunotherapy, have demonstrated encouraging anti-neoplastic properties and are progressively garnering public acceptance. However, research on oncolytic viruses in kidney cancer is relatively limited. Furthermore, given the high complexity and heterogeneity of kidney cancer, it is crucial to identify an optimal oncolytic virus agent that is better suited for its treatment. The present study investigates the oncolytic activity of the Pseudorabies virus live attenuated vaccine (PRV-LAV) against KC. The findings clearly demonstrate that PRV-LAV exhibits robust oncolytic activity targeting KC cell lines. Furthermore, the therapeutic efficacy of PRV-LAV was confirmed in both a subcutaneous tumor-bearing nude mouse model and a syngeneic mouse model of KC. Combined RNA-seq analysis and flow cytometry revealed that PRV-LAV treatment substantially enhances the infiltration of a diverse range of lymphocytes, including T cells, B cells, macrophages, and NK cells. Additionally, PRV-LAV treatment enhances T cell activation and exerts antitumor effects. Importantly, the combination of PRV-LAV with anti-PD-1 antibodies, an approved drug for KC treatment, synergistically enhances the efficacy against KC. Overall, the discovery of PRV-LAV as an effective oncolytic virus holds significant importance for improving the treatment efficacy and survival rates of KC patients.


Assuntos
Vacinas Anticâncer , Herpesvirus Suídeo 1 , Inibidores de Checkpoint Imunológico , Neoplasias Renais , Vírus Oncolíticos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Herpesvirus Suídeo 1/genética , Neoplasias Renais/terapia , Vírus Oncolíticos/genética , Receptor de Morte Celular Programada 1 , Microambiente Tumoral , Vacinas Atenuadas , Vacinas Anticâncer/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico
11.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G607-G621, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38502145

RESUMO

Fecal microbiota transplantation (FMT) is a promising therapy for inflammatory bowel disease (IBD) via rectifying gut microbiota. The aim of this study was to identify a mechanism of how specific bacteria-associated immune response contributes to alleviated colitis. Forty donors were divided into high (donor H) and low (donor L) groups according to the diversity and the abundance of Bacteroides and Faecalibacterium by 16S rRNA sequencing. FMT was performed on dextran sulfate sodium (DSS)-induced colitis in mice. Mice with colitis showed significant improvement in intestinal injury and immune imbalance after FMT with group donor H (P < 0.05). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii were identified as targeted strains in donor feces by real-time PCR and droplet digital PCR. Mice with colitis were treated with mono- or dual-bacterial gavage therapy. Dual-bacterial therapy significantly ameliorated intestinal injury compared with mono-bacterial therapy (P < 0.05). Dual-bacterial therapy increased the M2/M1 macrophage polarization and improved the Th17/Treg imbalance and elevated IL-10 production by Tregs compared with the DSS group (P < 0.05). Metabolomics showed increased abundance of lecithin in the glycerophospholipid metabolism pathway. In conclusion, B. thetaiotaomicron and F. prausnitzii, as the key bacteria in donor feces, alleviate colitis in mice. The mechanism may involve increasing lecithin and regulating IL-10 production of intestinal Tregs.NEW & NOTEWORTHY We demonstrate that donors with high abundance of Bacteroides and Faecalibacterium ameliorate dextran sulfate sodium (DSS)-induced colitis in mice by fecal microbiota transplantation (FMT). The combination therapy of Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii is superior to mono-bacterial therapy in ameliorating colitis in mice, of which mechanism may involve promoting lecithin and inducing IL-10 production of intestinal Tregs.


Assuntos
Bacteroides thetaiotaomicron , Colite , Faecalibacterium prausnitzii , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Animais , Colite/terapia , Colite/microbiologia , Colite/induzido quimicamente , Colite/imunologia , Camundongos , Masculino , Humanos , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Interleucina-10/metabolismo , Adulto , Feminino , Fezes/microbiologia , Modelos Animais de Doenças , Pessoa de Meia-Idade
12.
Clin. transl. oncol. (Print) ; 26(3): 756-764, mar. 2024.
Artigo em Inglês | IBECS | ID: ibc-230805

RESUMO

There are controversial about the application of cancer-directed surgery (CDS) in patients with liver metastases from gastric cancer, with improved responses to chemotherapy and targeted treatments, the role of CDS in metastatic gastric cancer to the liver needs to be revisited. This study aimed to evaluate the effect of CDS on patients with liver metastases from gastric cancer. Data for patients with liver metastases from gastric cancer were extracted from the population-based Surveillance, Epidemiology, and End Results (SEER) database. A total of 958 individuals were enrolled, 285 in the CDS group and 673 in the non-cancer guided surgery (Non-CDS) group. Following propensity score matching (PSM) analysis at 1:1 in the two groups,285 were included in the survival analysis for each group. Kaplan–Meier values and Cox proportional risk models were used to estimate the effect of CDS on patients' prognoses. Compared with the Non-CDS group, the CDS group significantly prolonged the median overall survival from 4 months (95% confidence interval [CI] 3–5) to 11 months (95% CI 8–12), p value < 0.001. Overall survival (OS) at 1 year was higher in the CDS group than in the Non-CDS group, at 44% (95 CI 38–50) and 25% (95 CI 20–30), respectively. OS at 3 years was also higher in the CDS group than in the Non-CDS group, at 24% (95 CI 19–29) and 6% (95 CI 3–9), respectively. Multivariate analysis showed that Non-CDS (hazard ratio[HR] = 2.26, 95% CI 1.88–2.72, p value < 0.001) was an adverse independent prognostic factor for patients (AU)


Assuntos
Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/cirurgia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia , Estudos Retrospectivos , Estudos Prospectivos , Qualidade de Vida , Prognóstico
13.
Arch Endocrinol Metab ; 68: e230195, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38530959

RESUMO

Objective: The study aims to explore the relationship between lipoprotein lipase (LPL) variants and hyperlipidemic acute pancreatitis (HLAP) in the southeastern Chinese population. Subjects and methods: In total, 80 participants were involved in this study (54 patients with HLAP and 26 controls). All coding regions and intron-exon boundaries of the LPL gene were sequenced. The correlations between variants and phenotypes were also analysed. Results: The rate of rare LPL variants in the HLAP group is 14.81% (8 of 54), higher than in controls. Among the detected four variants (rs3735959, rs371282890, rs761886494 and rs761265900), the most common variant was rs371282890. Further analysis demonstrated that subjects with rs371282890 "GC" genotype had a 2.843-fold higher risk for HLAP (odds ratio [OR]: 2.843, 95% confidence interval [CI]: 1.119-7.225, p = 0.028) than subjects with the "CC" genotype. After adjusting for sex, the association remained significant (adjusted OR: 3.083, 95% CI: 1.208-7.869, p = 0.018). Subjects with rs371282890 "GC" genotype also exhibited significantly elevated total cholesterol, triglyceride and non-high-density lipoprotein cholesterol levels in all the participants and the HLAP group (p < 0.05). Conclusion: Detecting rare variants in LPL might be valuable for identifying higher-risk patients with HLAP and guiding future individualised therapeutic strategies.


Assuntos
Pancreatite , Humanos , Doença Aguda , China/epidemiologia , Genótipo , Lipase Lipoproteica/genética , Pancreatite/diagnóstico , Pancreatite/genética , Triglicerídeos
14.
J Cell Mol Med ; 28(7): e18212, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38516826

RESUMO

SBFI26, an inhibitor of FABP5, has been shown to suppress the proliferation and metastasis of tumour cells. However, the underlying mechanism by which SBFI26 induces ferroptosis in breast cancer cells remains largely unknown. Three breast cancer cell lines were treated with SBFI26 and CCK-8 assessed cytotoxicity. Transcriptome was performed on the Illumina platform and verified by qPCR. Western blot evaluated protein levels. Malondialdehyde (MDA), total superoxide dismutase (T-SOD), Fe, glutathione (GSH) and oxidized glutathione (GSSG) were measured. SBFI26 induced cell death time- and dose-dependent, with a more significant inhibitory effect on MDA-MB-231 cells. Fer-1, GSH and Vitamin C attenuated the effects but not erastin. RNA-Seq analysis revealed that SBFI26 treatment significantly enriched differentially expressed genes related to ferroptosis. Furthermore, SBFI26 increased intracellular MDA, iron ion, and GSSG levels while decreasing T-SOD, total glutathione (T-GSH), and GSH levels.SBFI26 dose-dependently up-regulates the expression of HMOX1 and ALOX12 at both gene and protein levels, promoting ferroptosis. Similarly, it significantly increases the expression of SAT1, ALOX5, ALOX15, ALOXE3 and CHAC1 that, promoting ferroptosis while downregulating the NFE2L2 gene and protein that inhibit ferroptosis. SBFI26 leads to cellular accumulation of fatty acids, which triggers excess ferrous ions and subsequent lipid peroxidation for inducing ferroptosis.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Dissulfeto de Glutationa , Ferroptose/genética , Peroxidação de Lipídeos , Glutationa , Ferro , Superóxido Dismutase/genética , Espécies Reativas de Oxigênio , Proteínas de Ligação a Ácido Graxo
15.
Front Bioeng Biotechnol ; 12: 1354286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375451

RESUMO

Diabetic wounds are a significant subset of chronic wounds characterized by elevated levels of inflammatory cytokines, matrix metalloproteinases (MMPs), and reactive oxygen species (ROS). They are also associated with impaired angiogenesis, persistent infection, and a high likelihood of hospitalization, leading to a substantial economic burden for patients. In severe cases, amputation or even mortality may occur. Diabetic foot ulcers (DFUs) are a common complication of diabetes, with up to 25% of diabetic patients being at risk of developing foot ulcers over their lifetime, and more than 70% ultimately requiring amputation. Electrospun scaffolds exhibit a structural similarity to the extracellular matrix (ECM), promoting the adhesion, growth, and migration of fibroblasts, thereby facilitating the formation of new skin tissue at the wound site. The composition and size of electrospun scaffolds can be easily adjusted, enabling controlled drug release through fiber structure modifications. The porous nature of these scaffolds facilitates gas exchange and the absorption of wound exudate. Furthermore, the fiber surface can be readily modified to impart specific functionalities, making electrospinning nanofiber scaffolds highly promising for the treatment of diabetic wounds. This article provides a concise overview of the healing process in normal wounds and the pathological mechanisms underlying diabetic wounds, including complications such as diabetic foot ulcers. It also explores the advantages of electrospinning nanofiber scaffolds in diabetic wound treatment. Additionally, it summarizes findings from various studies on the use of different types of nanofiber scaffolds for diabetic wounds and reviews methods of drug loading onto nanofiber scaffolds. These advancements broaden the horizon for effectively treating diabetic wounds.

16.
J Ethnopharmacol ; 326: 117873, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38346523

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rhubarb is the peeled and dried roots of Rheum palmatum L. and Rheum tanguticum Maxim. ex Balf. or Rheum officinale Baill. Free total rhubarb anthraquinones (FTRAs) were isolated and extracted from rhubarb. Previous studies have revealed that the early administration of FTRAs protects the intestinal mucosal barrier in rats with severe acute pancreatitis (SAP), the mechanism of which is not yet clear. However, we observed an enhanced expression of intestinal pyroptotic factors in rats treated with SAP, which may be related to the mechanism of intestinal barrier protection by FTRAs. AIM OF THE STUDY: The main objective of this study was to investigate the mechanism by which FTRAs protect the intestinal mucosal barrier in SAP rats, focusing on the classical pyroptosis pathway. MATERIALS AND METHODS: SAP was induced in rats through retrograde injection of sodium taurocholate via the pancreaticobiliary duct. Subsequently, FTRAs (22.5, 45, and 90 mg/kg), rhubarb (900 mg/kg, positive control), and saline (control) were administered at 0 h (immediately), 12 h, and 24 h post-surgery. Pancreatic and intestinal tissue injury, positive PI staining rate, and expression levels of various factors in intestinal tissues were compared across different groups. These factors include diamine oxidase (DAO), lactate dehydrogenase (LDH), high mobility group box chromosomal protein 1(HMGB1) and pro-inflammatory factors in intestinal and serum, pyroptosis-associated factors, toll-like receptor 4 (TLR-4), nuclear factor kappa-B (NF-kB), apoptosis-associated speck-like protein (ASC), NOD-like receptor protein 3 (NLRP3), cysteine protease-1 (caspase-1) and Gasdermin (GSDMD). RESULTS: The findings indicated that FTRAs protected the damaged intestine and pancreas and restored the expression of intestinal epithelial junction proteins in SAP rats. Additionally, it reduced intestinal and serum levels of DAO, interleukin 1, interleukin 18, HMGB1, and LDH, attenuated intestinal Positive PI staining rate, and significantly decreased the expressions of TLR-4, NF-kB, ASC, NLRP3, caspase-1 and GSDMD in SAP rats. CONCLUSIONS: The results suggest that FTRAs inhibited pyroptosis through down-regulation of the NLRP3-Caspase-1-GSDMD and TLR-4- NF-kB signaling pathways of intestinal tissues., thereby protecting the intestinal barrier of SAP rats.


Assuntos
Proteína HMGB1 , Pancreatite , Rheum , Ratos , Animais , Pancreatite/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor 4 Toll-Like/metabolismo , NF-kappa B/metabolismo , Caspase 1 , Ratos Sprague-Dawley , Doença Aguda , Proteínas NLR , Antraquinonas/farmacologia , Antraquinonas/uso terapêutico
17.
Nat Chem Biol ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355723

RESUMO

Major depressive disorder, a prevalent and severe psychiatric condition, necessitates development of new and fast-acting antidepressants. Genetic suppression of astrocytic inwardly rectifying potassium channel 4.1 (Kir4.1) in the lateral habenula ameliorates depression-like phenotypes in mice. However, Kir4.1 remains an elusive drug target for depression. Here, we discovered a series of Kir4.1 inhibitors through high-throughput screening. Lys05, the most potent one thus far, effectively suppressed native Kir4.1 channels while displaying high selectivity against established targets for rapid-onset antidepressants. Cryogenic-electron microscopy structures combined with electrophysiological characterizations revealed Lys05 directly binds in the central cavity of Kir4.1. Notably, a single dose of Lys05 reversed the Kir4.1-driven depression-like phenotype and exerted rapid-onset (as early as 1 hour) antidepressant actions in multiple canonical depression rodent models with efficacy comparable to that of (S)-ketamine. Overall, we provided a proof of concept that Kir4.1 is a promising target for rapid-onset antidepressant effects.

18.
Org Lett ; 26(8): 1544-1549, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358975

RESUMO

In the last few decades, directed C-H bond functionalization has had enormous applicability in academia and industry. The development of a novel, readily accessible, and scalable directing group with modifiable ability is highly desirable in C-H functionalization. Herein, we report the 1,2,3-thiadiazole as a modifiable directing group for C-H amidation and alkynylation with dioxazolones, p-toluenesulfonyl azide, and bromoalkynes in high yield. The densely functionalized 1,2,3-thiadiazole products are modified into thioamide, multisubstituted furan, γ-thiapyrone, thiazole, and various alkynyl sulfides through simple and one-step reactions. The competition experiments reveal that the directing ability of 1,2,3-thiadiazole is slightly weaker than pyridine and bidentate amide but stronger than the widely used carboxylate.

19.
Chem Biol Drug Des ; 103(1): e14417, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230790

RESUMO

Programmed cell death (PCD) induction is a promising strategy for killing gastric cancer cells. In this study, we investigated the effects of chrysophanol on apoptosis and ferroptosis in gastric cancer cells. Chrysophanol in concentrations ranging from 0 to 100 µM were used to treat GES-1, HGC-27 and AGS cells. Cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine staining, flow cytometry, JC-1 probe insertion, dihydroethidium staining and western blotting were performed. The effects of chrysophanol on gastric cancer cells were evaluated in vivo using a xenograft mouse model. Chrysophanol had no cytotoxic effects on GES-1 cells. Chrysophanol with concentrations higher than 25 µM inhibited gastric cancer cell colony formation and proliferation. Chrysophanol induces gastric cancer cell apoptosis in a dose-dependent manner, accompanied by mitochondrial membrane potential dysfunction and cytochrome c release. Additionally, chrysophanol increased the levels of reactive oxygen species, total iron, and Fe2+ in HGC-27 and AGS cells, in a dose-dependent manner. Treatment of cells with the ferroptosis inhibitor ferrostatin-1 attenuated the effects of chrysophanol on cell survival and the expression of ferroptosis markers SLC7A11 and GPX4. Screening by GEO software indicated that the mTOR signalling pathway is possibly regulated by chrysophanol. Furthermore, mTOR overexpression significantly reversed the inhibitory effects of chrysophanol on gastric cancer cells. In gastric cancer xenograft mouse models, chrysophanol treatment inhibited tumour growth and downregulated SLC7A11 and GPX4. Chrysophanol induces apoptosis and ferroptosis, making it a potential candidate for killing gastric cancer cells. The beneficial effects of chrysophanol may be attribute to the targeted regulation of mTOR.


Assuntos
Antraquinonas , Ferroptose , Neoplasias Gástricas , Humanos , Camundongos , Animais , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células
20.
J Chin Med Assoc ; 87(3): 292-298, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38289285

RESUMO

BACKGROUND: This study aimed to evaluate the characteristics of bone metabolism and fracture risk in the type 2 diabetes mellitus (T2DM) patients with distal symmetric polyneuropathy (DSPN). METHODS: A total of 198 T2DM individuals were recruited from January 2017 to December 2020. Patients with DSPN were evaluated by strict clinical and sensory thresholds. Biochemical parameters and bone mineral density (BMD) were measured. The BMD, bone turnover markers, and probability of fracture were compared between two groups, and the factors related to BMD and probability of hip fracture in 10 years were further explored. RESULTS: Compared with type 2 diabetes mellitus without distal symmetric polyneuropathy (T2DN-) patients, type 2 diabetes mellitus with distal symmetric polyneuropathy (T2DN+) patients had lower level of cross-linked C-telopeptide (CTX) (0.32 ± 0.19 vs 0.38 ± 0.21 ng/mL, p = 0.038) and higher level of bone-specific alkaline phosphatase (BALP) (15.28 ± 5.56 vs 12.58 ± 4.41 µg/mL, p = 0.003). T2DN+ patients had higher BMD of lumbar L1-L4 (1.05 ± 0.19 vs 0.95 ± 0.37, p = 0.027) and higher probability of hip fracture (0.98 ± 0.88 vs 0.68 ± 0.63, p = 0.009) as compared to T2DN- individuals. Univariate correlation analysis showed that BALP level (coefficient (coef) = -0.054, p = 0.038), CTX level (coef = -2.28, p = 0.001), and hip fracture risk (coef = -1.02, p < 0.001) were negatively related to the BMD of L1-L4. As for the risk of hip fracture evaluated by WHO Fracture Risk Assessment Tool (FRAX), age (coef = 0.035, p < 0.001), use of insulin (coef = 0.31, p =0.015), and levels of BALP (coef = 0.031, p = 0.017) and CTX (coef = 0.7, p = 0.047) were positively related to the risk of hip fracture. Multivariate regression analysis showed that CTX level (coef = -1.41, p = 0.043) was still negatively related to BMD at the lumbar spine. CONCLUSION: This study indicates that T2DM patients with DSPN have special bone metabolism represented by higher BALP level and lower CTX level which may increase BMD at the lumbar spine.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Fraturas do Quadril , Polineuropatias , Humanos , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Neuropatias Diabéticas/etiologia , Densidade Óssea , Fraturas do Quadril/etiologia , Biomarcadores , Remodelação Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...