Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(10): e18395, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38774995

RESUMO

Tumour-associated macrophages (TAMs), encompassing M1 and M2 subtypes, exert significant effects on osteosarcoma (OS) progression and immunosuppression. However, the impacts of TAM-derived biomarkers on the progression of OS remains limited. The GSE162454 profile was subjected to single-cell RNA (scRNA) sequencing analysis to identify crucial mediators between TAMs and OS cells. The clinical features, effects and mechanisms of these mediators on OS cells and tumour microenvironment were evaluated via biological function experiments and molecular biology experiments. Phosphodiesterase 4C (PDE4C) was identified as a pivotal mediator in the communication between M2 macrophages and OS cells. Elevated levels of PDE4C were detected in OS tissues, concomitant with M2 macrophage level, unfavourable prognosis and metastasis. The expression of PDE4C was observed to increase during the conversion process of THP-1 cells to M2 macrophages, which transferred the PDE4C mRNA to OS cells through exosome approach. PDE4C increased OS cell proliferation and mobility via upregulating the expression of collagens. Furthermore, a positive correlation was observed between elevated levels of PDE4C and increased TIDE score, decreased response rate following immune checkpoint therapy, reduced TMB and diminished PDL1 expression. Collectively, PDE4C derived from M2 macrophages has the potential to enhance the proliferation and mobility of OS cells by augmenting collagen expression. PDE4C may serve as a valuable biomarker for prognosticating patient outcomes and response rates following immunotherapy.


Assuntos
Neoplasias Ósseas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Imunoterapia , Macrófagos , Osteossarcoma , Microambiente Tumoral , Osteossarcoma/patologia , Osteossarcoma/imunologia , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/terapia , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Prognóstico , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Masculino , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Feminino , Metástase Neoplásica , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Movimento Celular
2.
Cell Death Dis ; 15(4): 239, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561331

RESUMO

The oncogenic properties of members belonging to the forkhead box (FOX) family have been extensively documented in different types of cancers. In this study, our objective was to investigate the impact of FOXP3 on glioblastoma multiforme (GBM) cells. By conducting a screen using a small hairpin RNA (shRNA) library, we discovered a significant association between FOXP3 and ferroptosis in GBM cells. Furthermore, we observed elevated levels of FOXP3 in both GBM tissues and cell lines, which correlated with a poorer prognosis. FOXP3 was found to promote the proliferation of GBM cells by inhibiting cell ferroptosis in vitro and in vivo. Mechanistically, FOXP3 not only directly upregulated the transcription of GPX4, but also attenuated the degradation of GPX4 mRNA through the linc00857/miR-1290 axis, thereby suppressing ferroptosis and promoting proliferation. Additionally, the FOXP3 inhibitor epirubicin exhibited the ability to impede proliferation and induce ferroptosis in GBM cells both in vitro and in vivo. In summary, our study provided evidences that FOXP3 facilitates the progression of glioblastoma by inhibiting ferroptosis via the linc00857/miR-1290/GPX4 axis, highlighting FOXP3 as a potential therapeutic target for GBM.


Assuntos
Ferroptose , Glioblastoma , MicroRNAs , Humanos , Glioblastoma/genética , Ferroptose/genética , MicroRNAs/genética , RNA Interferente Pequeno , Fatores de Transcrição Forkhead/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
3.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611789

RESUMO

Natural chemicals derived from herbal plants have recently been recognized as potentially useful treatment alternatives owing to their ability to target a wide range of important biological molecules. Cynaroside is one of these natural compounds with promising anticancer activity for numerous tumor types. Nevertheless, the anticancer effects and molecular mechanisms of action of cynaroside on colorectal cancer (CRC) remain unclear. In this study, cynaroside was found to markedly inhibit CRC cell proliferation and colony formation in vitro. Cynaroside also inhibited cell proliferation in vivo and decreased the expression of KI67, a cell nuclear antigen. RNA sequencing revealed 144 differentially expressed genes (DEGs) in HCT116 cells and 493 DEGs in RKO cells that were enriched in the cell cycle signaling pathway. Cell division cycle 25A (CDC25A), a DEG widely enriched in the cell cycle signaling pathway, is considered a key target of cynaroside in CRC cells. Cynaroside also inhibited DNA replication and arrested cells in the G1/S phase in vitro. The expression levels of CDC25A and related G1-phase proteins were significantly elevated after CDC25A overexpression in CRC cells, which partially reversed the inhibitory effect of cynaroside on CRC cell proliferation and G1/S-phase arrest. In summary, cynaroside may be used to treat CRC as it inhibits CDC25A expression.


Assuntos
Neoplasias Colorretais , Glucosídeos , Humanos , Pontos de Checagem da Fase G1 do Ciclo Celular , Luteolina , Neoplasias Colorretais/tratamento farmacológico
4.
BMC Cancer ; 24(1): 506, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649860

RESUMO

BACKGROUND: N1-methyladenosine (m1A), among the most common internal modifications on RNAs, has a crucial role to play in cancer development. The purpose of this study were systematically investigate the modification characteristics of m1A in hepatocellular carcinoma (HCC) to unveil its potential as an anticancer target and to develop a model related to m1A modification characteristics with biological functions. This model could predict the prognosis for patients with HCC. METHODS: An integrated analysis of the TCGA-LIHC database was performed to explore the gene signatures and clinical relevance of 10 m1A regulators. Furthermore, the biological pathways regulated by m1A modification patterns were investigated. The risk model was established using the genes that showed differential expression (DEGs) between various m1A modification patterns and autophagy clusters. These in vitro experiments were subsequently designed to validate the role of m1A in HCC cell growth and autophagy. Immunohistochemistry was employed to assess m1A levels and the expression of DEGs from the risk model in HCC tissues and paracancer tissues using tissue microarray. RESULTS: The risk model, constructed from five DEGs (CDK5R2, TRIM36, DCAF8L, CYP26B, and PAGE1), exhibited significant prognostic value in predicting survival rates among individuals with HCC. Moreover, HCC tissues showed decreased levels of m1A compared to paracancer tissues. Furthermore, the low m1A level group indicated a poorer clinical outcome for patients with HCC. Additionally, m1A modification may positively influence autophagy regulation, thereby inhibiting HCC cells proliferation under nutrient deficiency conditions. CONCLUSIONS: The risk model, comprising m1A regulators correlated with autophagy and constructed from five DEGs, could be instrumental in predicting HCC prognosis. The reduced level of m1A may represent a potential target for anti-HCC strategies.


Assuntos
Autofagia , Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Metilação de RNA , Feminino , Humanos , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Autofagia/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Perfilação da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Prognóstico , Metilação de RNA/genética
5.
Heliyon ; 10(7): e29212, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38633656

RESUMO

Background: Grade 4 diffuse gliomas are highly malignant tumours with poor prognosis. Cuproptosis is a novel form of cell death. Cuproptosis genes are associated with various tumours and affect the prognosis of patients with these tumours. However, the relationship between cuproptosis and grade 4 diffuse gliomas remains unclear. Methods: Differentially expressed genes associated with cuproptosis in grade 4 diffuse gliomas were identified. Second, the prognostic model was established by univariate and multivariate COX regression analyses, and the genes (p < 0.05) were selected for subsequent analysis. The endpoint of the study was death. Single-gene analysis was performed in accordance with the expression levels of SLC31A1. Third, based on the expression levels of SLC31A1, gene function enrichment, drug sensitivity, and immune cell infiltration analyses were performed. Finally, the expression and biological functions of SLC31A1 in grade 4 diffuse gliomas were identified using immunohistochemical staining, qRT-PCR, and related biological experiments. Results: We identified six coproptosis genes in the grade 4 diffuse gliomas dataset (SLC31A1, PDHA1, GLS, FDX1, LIPT1, and ATP7B). The six key cuproptosis genes of grade 4 diffuse gliomas were analysed using univariate COX analysis. Basic patient data, including age, race, year of diagnosis, sex, and treatment, were included in the univariate COX analysis. Then, multivariate COX analysis was performed for the factors with p < 0.2 in the univariate COX analysis. Age, year of diagnosis, and SLC31A1, PDHA1, and FDX1 levels were found to be independent prognostic factors. A nomogram was constructed using these 5 factors. Through experiments, we found that SLC31A1 had a higher expression level in cancer tissue than that near cancer among the three genes, SLC31A1, PDHA1, and FDX1; therefore, we focused on SLC31A1. According on the expression level of SLC31A1, we performed gene function enrichment, drug sensitivity, and immune cell infiltration analyses. Navitoclax was the most sensitive drug. Differential gene function enrichment was observed for metalloendopeptidase activity. SLC31A1 is expressed in dendritic cells, macrophages, neutrophils, and CD8+T cells. SLC31A1 is highly expressed in grade 4 diffuse gliomas, whereas SLC31A1 knockdown significantly reduces cell proliferation and mobility. Conclusions: Age, year of diagnosis, and SLC31A1, PDHA1, and FDX1 expression were independent prognostic factors. A nomogram was constructed based on age, year of diagnosis, and SLC31A1, PDHA1, and FDX1 levels. Through analysis and experimental verification, SLC31A1 was found to affect the prognosis and progression of patients with grade 4 diffuse gliomas and was associated with immune cell infiltration.

6.
Front Immunol ; 15: 1387316, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660305

RESUMO

Background: Skin Cutaneous Melanoma (SKCM) incidence is continually increasing, with chemotherapy and immunotherapy being among the most common cancer treatment modalities. This study aims to identify novel biomarkers for chemotherapy and immunotherapy response in SKCM and explore their association with oxidative stress. Methods: Utilizing TCGA-SKCM RNA-seq data, we employed Weighted Gene Co-expression Network Analysis (WGCNA) and Protein-Protein Interaction (PPI) networks to identify six core genes. Gene co-expression analysis and immune-related analysis were conducted, and specific markers associated with oxidative stress were identified using Gene Set Variation Analysis (GSVA). Single-cell analysis revealed the expression patterns of Oxidative Stress-Associated Genes (OSAG) in the tumor microenvironment. TIDE analysis was employed to explore the association between immune therapy response and OSAG, while CIBERSORT was used to analyze the tumor immune microenvironment. The BEST database demonstrated the impact of the Oxidative Stress signaling pathway on chemotherapy drug resistance. Immunohistochemical staining and ROC curve evaluation were performed to assess the protein expression levels of core genes in SKCM and normal samples, with survival analysis utilized to determine their diagnostic value. Results: We identified six central genes associated with SKCM metastasis, among which the expression of DSC2 and DSC3 involved in the oxidative stress pathway was closely related to immune cell infiltration. DSC2 influenced drug resistance in SKMC patients. Furthermore, downregulation of DSC2 and DSC3 expression enhanced the response of SKCM patients to immunotherapy. Conclusion: This study identified two Oxidative Stress-Associated genes as novel biomarkers for SKCM. Additionally, targeting the oxidative stress pathway may serve as a new strategy in clinical practice to enhance SKCM chemotherapy and sensitivity.


Assuntos
Biomarcadores Tumorais , Melanoma , Estresse Oxidativo , Neoplasias Cutâneas , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Melanoma/imunologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Prognóstico , Melanoma Maligno Cutâneo , Regulação Neoplásica da Expressão Gênica , Mapas de Interação de Proteínas , Feminino , Masculino , Perfilação da Expressão Gênica , Transcriptoma , Resistencia a Medicamentos Antineoplásicos/genética , Imunoterapia/métodos , Pessoa de Meia-Idade , Redes Reguladoras de Genes
7.
Theranostics ; 14(6): 2345-2366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646645

RESUMO

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Assuntos
Desacetilase 6 de Histona , Camundongos Transgênicos , Fator de Crescimento Neural , Folículo Ovariano , Ubiquitinação , Animais , Feminino , Humanos , Camundongos , Acetilação , Células da Granulosa/metabolismo , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Fator de Crescimento Neural/metabolismo , Folículo Ovariano/metabolismo
8.
Aging (Albany NY) ; 16(6): 5618-5633, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499392

RESUMO

The telomerase reverse transcriptase promoter (TERTp) is frequently mutated in gliomas. This study sought to identify immune biomarkers of gliomas with TERTp mutations. Data from TCGA were used to identify and validate survival-associated gene signatures, and immune and stromal scores were calculated using the ESTIMATE algorithm. High stromal or immune scores in patients with TERTp-mutant gliomas correlated with shorter overall survival compared to cases with low stromal or immune scores. Among TERTp-mutant gliomas with both high immune and high stromal scores, 213 commonly shared DEGs were identified. Among 71 interacting DEGs representing candidate hub genes in a PPI network, HOXC6, WT1, CD70, and OTP showed significant ability in establishing subgroups of high- and low-risk patients. A risk model based on these 4 genes showed strong prognostic potential for gliomas with mutated TERTp, but was inapplicable for TERTp-wild-type gliomas. TERTp-mutant gliomas with high-risk scores displayed a greater percentage of naïve B cells, plasma cells, naïve CD4 T cells, and activated mast cells than low-risk score gliomas. TIDE analysis indicated that immune checkpoint blockade (ICB) therapy may benefit glioma patients with TERTp mutations. The present risk model can help predict prognosis of glioma patients with TERTp mutations and aid ICB treatment options.


Assuntos
Neoplasias Encefálicas , Glioma , Telomerase , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Mutação , Glioma/tratamento farmacológico , Glioma/genética , Prognóstico , Telomerase/genética
9.
Aging (Albany NY) ; 16(4): 3837-3855, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376441

RESUMO

Immunotherapy is currently one of the most viable therapies for head and neck squamous cell carcinoma (HNSCC), characterized by high immune cell infiltration. The Wnt-signaling inhibitor and immune activation mediator, Dickkopf-1 (DKK1), has a strong correlation with tumor growth, tumor microenvironment, and, consequently, disease prognosis. Nevertheless, it is still unclear how DKK1 expression, HNSCC prognosis, and tumor-infiltrating lymphocytes are related. To better understand these associations, we examined how DKK1 expression varies across different tumor and normal tissues. In our study, we investigated the association between DKK1 mRNA expression and clinical outcomes. Next, we assessed the link between DKK1 expression and tumor immune cell infiltration. Additionally, using immunohistochemistry, we evaluated the expression of DKK1 in 15 healthy head and neck tissue samples, and the expression of CD3, CD4, and DKK1 in 27 HNSCC samples. We also explored aberrant DKK1 expression during tumorigenesis. DKK1 expression was remarkably higher in HNSCC tissues than in healthy tissues, and was shown to be associated with tumor stage, grade, lymph node metastasis, histology, and a dismal clinical prognosis in HNSCC. DKK1 expression in HNSCC tissues was inversely correlated with CD3+ (P < 0.0001) and CD4+ (P < 0.0001) immune cell infiltration, while that in immune cells was inversely associated with HNSCC prognosis. These findings offer a bioinformatics perspective on the function of DKK1 in HNSCC immunotherapy and provide justification for clinical research on DKK1-targeted HNSCC treatments. DKK1 is a central target for improving the efficacy of HNSCC immunotherapy.


Assuntos
Carcinogênese , Neoplasias de Cabeça e Pescoço , Humanos , Biomarcadores , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral
10.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255822

RESUMO

Sepsis ranks among the most common health problems worldwide, characterized by organ dysfunction resulting from infection. Excessive inflammatory responses, cytokine storms, and immune-induced microthrombosis are pivotal factors influencing the progression of sepsis. Our objective was to identify novel immune-related hub genes for sepsis through bioinformatic analysis, subsequently validating their specificity and potential as diagnostic and prognostic biomarkers in an animal experiment involving a sepsis mice model. Gene expression profiles of healthy controls and patients with sepsis were obtained from the Gene Expression Omnibus (GEO) and analysis of differentially expressed genes (DEGs) was conducted. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to analyze genes within crucial modules. The functional annotated DEGs which related to the immune signal pathways were used for constructing protein-protein interaction (PPI) analysis. Following this, two hub genes, FERMT3 and CD3G, were identified through correlation analyses associated with sequential organ failure assessment (SOFA) scores. These two hub genes were associated with cell adhesion, migration, thrombosis, and T-cell activation. Furthermore, immune infiltration analysis was conducted to investigate the inflammation microenvironment influenced by the hub genes. The efficacy and specificity of the two hub genes were validated through a mice sepsis model study. Concurrently, we observed a significant negative correlation between the expression of CD3G and IL-1ß and GRO/KC. These findings suggest that these two genes probably play important roles in the pathogenesis and progression of sepsis, presenting the potential to serve as more stable biomarkers for sepsis diagnosis and prognosis, deserving further study.


Assuntos
Experimentação Animal , Sepse , Animais , Humanos , Camundongos , Biomarcadores , Adesão Celular , Biologia Computacional , Modelos Animais de Doenças , Sepse/genética
11.
Molecules ; 28(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138552

RESUMO

Gastrodin, the primary bioactive compound found in Gastrodia elata, has been shown to exhibit neuroprotective properties in a range of neurological disorders. However, the precise mechanisms through which gastrodin influences glioma cells remain unclear, and there is a scarcity of data regarding its specific effects. To ascertain the viability of glioma cell lines LN229, U251, and T98, the CCK-8 assay, a colony formation assay, and a 3D culture model were employed, utilizing varying concentrations of gastrodin (0, 5, 10, and 20 µM). Gastrodin exhibited a notable inhibitory effect on the growth of glioma cells, as evidenced by its ability to suppress colony formation and spheroid formation. Additionally, gastrodin induced ferroptosis in glioma cells, as it can increase the levels of reactive oxygen species (ROS) and peroxidized lipids, and reduced the levels of glutathione. Using a subcutaneous tumor model, gastrodin was found to significantly inhibit the growth of the T98 glioma cell line in vivo. Using high-throughput sequencing, PPI analysis, and RT-qPCR, we successfully identified Homeobox D10 (HOXD10) as the principal target of gastrodin. Gastrodin administration significantly enhanced the expression of HOXD10 in glioma cells. Furthermore, treatment with gastrodin facilitated the transcription of ACSL4 via HOXD10. Notably, the inhibition of HOXD10 expression impeded ferroptosis in the cells, which was subsequently restored upon rescue with gastrodin treatment. Overall, our findings suggest that gastrodin acts as an anti-cancer agent by inducing ferroptosis and inhibiting cell proliferation in HOXD10/ACSL4-dependent pathways. As a prospective treatment for gliomas, gastrodin will hopefully be effective.


Assuntos
Ferroptose , Glioma , Humanos , Ferroptose/genética , Regulação para Cima , Genes Homeobox , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Linhagem Celular Tumoral
12.
Aging (Albany NY) ; 15(19): 10453-10472, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37812190

RESUMO

Immune and stromal cells contribute to glioma progression by infiltrating the tumor microenvironment. We used clinical characteristics, RNA sequencing data and the ESTIMATE algorithm to obtain stromal and immune scores for alpha thalassemia retardation syndrome X-linked (ATRX)-mutation-type (ATRX-mt) and ATRX-wildtype (ATRX-wt) glioma tissues from The Cancer Genome Atlas. To identify specific immune biomarkers of glioma, we compared the gene expression profiles of ATRX-wt glioma tissues with high vs. low immune/stromal scores, and discovered 162 differentially expressed genes. The protein-protein interaction network based on these results contained 80 interacting genes, of which seven (HOXA5, PTPN2, WT1, HOXD10, POSTN, ADAMDEC1 and MYBPH) were identified as key prognostic genes via LASSO and Cox regression analyses. A risk model constructed using the expression of these seven genes could predict survival for ATRX-wt glioma patients, but was ineffective for ATRX-mt patients. T cells and macrophages were more prevalent in low-risk than in high-risk glioma tissues. Immune checkpoint blockade treatment was highly beneficial for patients with low risk scores. High-risk gliomas were predicted to be more sensitive to rapamycin, dasatinib, 5-fluorouracil and gemcitabine. Thus, our model can be used for the diagnosis, prognostic prediction and treatment planning of ATRX-wt glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Prognóstico , Microambiente Tumoral
13.
Biomolecules ; 13(10)2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37892195

RESUMO

tRNA-derived small RNAs (tDRs) are dysregulated in several diseases, including pancreatic cancer (PC). However, only a limited number of tDRs involved in PC progression are known. Herein, a novel tDR, 5'-tRF-19-Q1Q89PJZ (tRF-19-Q1Q89PJZ), was verified in PC plasma using RNA and Sanger sequencing. tRF-19-Q1Q89PJZ was downregulated in PC tissues and plasma, which was related to advanced clinical characteristics and poor prognosis. tRF-19-Q1Q89PJZ overexpression inhibited the malignant activity of PC cells in vitro, while tRF-19-Q1Q89PJZ inhibition produced an opposite effect. The differentially expressed genes induced by tRF-19-Q1Q89PJZ overexpression were enriched in "pathways in cancer" and "glycolysis". Mechanistically, tRF-19-Q1Q89PJZ directly sponged hexokinase 1 (HK1) mRNA and inhibited its expression, thereby suppressing glycolysis in PC cells. HK1 restoration relieved the inhibitory effect of tRF-19-Q1Q89PJZ on glycolysis in PC cells and on their proliferation and mobility in vitro. tRF-19-Q1Q89PJZ upregulation inhibited PC cell proliferation and metastasis in vivo and suppressed HK1 expression in tumor tissues. Furthermore, tRF-19-Q1Q89PJZ expression was attenuated under hypoxia. Collectively, these findings indicate that tRF-19-Q1Q89PJZ suppresses the malignant activity of PC cells by regulating HK1-mediated glycolysis. Thus, tRF-19-Q1Q89PJZ may serve as a key target for PC therapy.


Assuntos
Hexoquinase , Neoplasias Pancreáticas , Humanos , Hexoquinase/genética , Hexoquinase/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/metabolismo , Glicólise , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas
14.
Aging (Albany NY) ; 15(18): 9842-9857, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37737709

RESUMO

Although angiogenesis critically influences the progression of solid tumors, its contribution to highly malignant, grade 4 diffuse gliomas remains unclear. After analyzing 506 angiogenesis-related genes differentially expressed in grade 4 diffuse gliomas via LASSO and univariate and multivariate COX regression analyses, we constructed a nomogram based on COL22A1, IGFBP2, and MPO that accurately predicted patient survival. The nomogram's performance was validated in an external patient cohort, and a risk score based on the formula COL22A1*0.148+IGFBP2*0.234+MPO*0.145 was used to distinguish high-risk from low-risk patients. Based on differentially expressed genes among risk groups, functional enrichment and drug sensitivity analyses were conducted, and the association between COL22A1, IGFBP2, and MPO expression and infiltrating immune cells and immune checkpoint genes was investigated. We next focused on COL22A1, and verified its overexpression in both glioma cell lines and clinical samples. A pro-oncogenic role for COL22A1, evidenced by impaired proliferation, migration, and invasion capacities, was evidenced upon shRNA-mediated COL22A1 silencing in glioma U87 and LN18 cells. In summary, we present a novel nomogram based on the angiogenesis-related genes COL22A1, IGFBP2, and MPO that allows survival prediction in patients with grade 4 diffuse gliomas. Furthermore, our cellular assays support a pro-oncogenic role for COL22A1 in these tumors.

15.
Aging (Albany NY) ; 15(18): 9377-9390, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37768200

RESUMO

Ar-turmerone, a compound isolated from turmeric seeds, has exhibited anti-malignant, anti-aging and anti-inflammatory properties. Here, we assessed the effects of ar-turmerone on glioma cells. U251, U87 and LN229 glioma cell lines were treated with different concentrations of ar-turmerone (0, 50, 100 and 200 µM), and their viability and mobility were evaluated using Cell Counting Kit 8, colony formation, wound healing and Transwell assays. The effects of ar-turmerone on U251 glioma cell proliferation were also assessed using a subcutaneous implantation tumor model. High-throughput sequencing, bioinformatic analyses and quantitative real-time polymerase chain reactions were used to identify the key signaling pathways and targets of ar-turmerone. Ar-turmerone reduced the proliferation rate and mobility of glioma cells in vitro and arrested cell division at G1/S phase. Cathepsin B was identified as a key target of ar-turmerone in glioma cells. Ar-turmerone treatment reduced cathepsin B expression and inhibited the cleavage of its target protein P27 in glioma cells. On the other hand, cathepsin B overexpression reversed the inhibitory effects of ar-turmerone on glioma cell proliferation, mobility progression in vitro and in vivo. In conclusion, ar-turmerone suppressed cathepsin B expression and P27 cleavage, thereby inhibiting the proliferation and mobility of glioma cells.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Catepsina B , Linhagem Celular Tumoral , Glioma/patologia , Proliferação de Células , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia
16.
Cancer Biol Ther ; 24(1): 2249170, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37647260

RESUMO

Sinapine thiocyanate (ST), an alkaloid existed extensively in seeds of cruciferous plants, exhibits a number of pharmacological effects, including anti-inflammatory and anti-malignancy properties. However, it is still unknown what effects and molecular mechanisms ST has on colorectal cancer (CRC). In the current study, it was indicated that ST inhibited proliferation, colony formation, and apoptosis in vitro, as well as arrested the G1 phase of CRC cells. There was a significant repressive effects of ST on invasion and migration of CRC cells in vitro. RNA-sequencing indicated that 750 differentially expressed genes existed in CRC cells after ST treatment, and enrichment analysis demonstrated that ST obviously decreased the activation of keratinization pathways. Among DEGs enriched in keratinization, keratin 6A (KRT6A) was decreased the most significant, as well as its target gene S100 calcium-binding protein A2 (S100A2). Low expression of KRT6A and S100A2 signatures indicated a favorable prognosis in CRC patients. Moreover, we found overexpression of KRT6A relieved the inhibitory effects of ST in CRC cells. Furthermore, ST inhibited the CRC cell proliferation in vivo, and reduced KRT6A and KI67 expression in xenograft tumor. Taken together, we demonstrated that ST exhibited anti-CRC properties by inhibiting KRT6A/S100A2 axis. It is possible that ST can be used as a treatment for CRC.


Assuntos
Neoplasias , Tiocianatos , Humanos , Queratina-6 , Apoptose , Fatores Quimiotáticos , Proteínas S100
17.
J Cell Mol Med ; 27(17): 2533-2546, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488774

RESUMO

The pancreatic stellate cells (PSCs) play an important role in the development of pancreatic cancer (PC) through mechanisms that remain unclear. Exosomes secreted from PSCs act as mediators for communication in PC. This study aimed to explore the role of PSC-derived exosomal small RNAs derived from tRNAs (tDRs) in PC cells. Exosomes from PSCs were extracted and used to detect their effects on PC cell proliferation, migration and invasion. Exosomal tDRs profiling was performed to identify PSC-derived exosomal tDRs. ISH and qRT-PCR were used to examine the tRF-19-PNR8YPJZ levels and clinical value in clinical samples. The biological function of exosomal tRF-19-PNR8YPJZ was determined using the CCK-8, clone formation, wound healing and transwell assays, subcutaneous tumour formation and lung metastatic models. The relationship between the selected exosomal tRF-19-PNR8YPJZ and AXIN2 was determined by RNA sequencing, luciferase reporter assay. PSC-derived exosomes promoted the proliferation, migration, and invasion of PC cells. Novel and abundant tDRs are found to be differentially expressed in PANC-1 cells after treatment with PSC-derived exosomes, such as tRF-19-PNR8YPJZ. PC tissue samples showed markedly higher levels of tRF-19-PNR8YPJZ than normal controls. Patients with PC exhibiting high tRF-19-PNR8YPJZ expression had a highly lymph node invasion, metastasis, perineural invasion, advanced clinical stage and poor overall survival. Exosomal tRF-19-PNR8YPJZ from PSCs targeted AXIN2 in PC cells and decreased its expression, thus activating the Wnt pathway and promoting proliferation and metastasis. Exosomal tRF-19-PNR8YPJZ from PSCs promoted proliferation and metastasis in PC cells via AXIN2.


Assuntos
Exossomos , MicroRNAs , Neoplasias Pancreáticas , Humanos , Células Estreladas do Pâncreas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Pancreáticas/patologia , Exossomos/metabolismo , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Axina/genética , Proteína Axina/metabolismo , Neoplasias Pancreáticas
18.
Heliyon ; 9(7): e17600, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483811

RESUMO

Gastric cancer (GC) is a common and highly malignant tumor of the digestive tract. Members of the focused fucosyltransferase (FUT) family participate in the advancement of various types of cancer. However, research of FUT family members in the progression of GC known to be limited. The purpose of the research was to determine the function of important affiliates of the FUT family in GC and to explore its impacts on the proliferation and migration of GC cells and molecular mechanisms. For the study, fucosyltransferase11 (FUT11) was confirmed to be the only affiliate of the FUT family that was upmodulated in GC tissues and linked to poor survival according to GEPIA data. Furthermore, compared with adjacent noncancerous tissues, the expression of FUT11 was increased in GC tissues. The elevated FUT11 expression suggested that the overall survival (OS) rate of GC is low. Inhibition of FUT11 significantly reduced the proliferation and migration and suppressed the PI3K/AKT pathway by down-regulated collagen type VI alpha 3 chain (COL6A3) in GC cells. The present study has demonstrated that reinstating the expression of COL6A3 in gastric cancer (GC) cells can counteract the inhibitory impact of FUT11 knockdown on the proliferation and migration of GC cells. In conclusion, FUT11 may serve as a novel biomarker for GC, as it modulates GC cell proliferation and migration through the PI3K/AKT signaling pathway.

19.
Molecules ; 28(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375197

RESUMO

According to previous research, turmeric seeds exhibit anti-inflammatory, anti-malignancy, and anti-aging properties due to an abundance of terpinen-4-ol (T4O). Although it is still unclear how T4O works on glioma cells, limited data exist regarding its specific effects. In order to determine whether or not glioma cell lines U251, U87, and LN229 are viable, CCK8 was used as an assay and a colony formation assay was performed using different concentrations of T4O (0, 1, 2, and 4 µM). The effect of T4O on the proliferation of glioma cell line U251 was detected through the subcutaneous implantation of the tumor model. Through high-throughput sequencing, a bioinformatic analysis, and real-time quantitative polymerase chain reactions, we identified the key signaling pathways and targets of T4O. Finally, for the measurement of the cellular ferroptosis levels, we examined the relationship between T4O, ferroptosis, and JUN and the malignant biological properties of glioma cells. T4O significantly inhibited glioma cell growth and colony formation and induced ferroptosis in the glioma cells. T4O inhibited the subcutaneous tumor proliferation of the glioma cells in vivo. T4O suppressed JUN transcription and significantly reduced its expression in the glioma cells. The T4O treatment inhibited GPX4 transcription through JUN. The overexpression of JUN suppressed ferroptosis in the cells rescued through T4O treatment. Taken together, our data suggest that the natural product T4O exerts its anti-cancer effects by inducing JUN/GPX4-dependent ferroptosis and inhibiting cell proliferation, and T4O will hope-fully serve as a prospective compound for glioma treatment.


Assuntos
Ferroptose , Glioma , Humanos , Genes jun , Estudos Prospectivos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Proliferação de Células
20.
J Cell Mol Med ; 27(13): 1820-1835, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37248957

RESUMO

Inflammation and ferroptosis crosstalk complexly with immune microenvironment of hepatocellular carcinoma (HCC), thus affecting the efficacy of immunotherapy. Herein, our aim was to identify the inflammation-associated ferroptosis (IAF) biomarkers for contributing HCC. A total of 224 intersecting DEGs identified from different inflammation- and ferroptosis-subtypes were set as IAF genes. Seven of them including ADH4, APOA5, CFHR3, CXCL8, FTCD, G6PD and PON1 were used for construction of a risk model which classified HCC patients into two groups (high and low risk). HCC patients in the high-risk group exhibited shorter survival rate and higher immune score, and were predicted to have higher respond rate in immune checkpoint inhibition (ICI) therapy. Levels of the seven genes were significantly changed in HCC tissues in comparison to adjacent tissues. After inserting the gene expression into the risk model, we found that the risk model exhibited the higher diagnostic value for distinguish HCC tissues compared each single gene. Furthermore, HCC tissues from our research group with high-risk score exhibited more cases of microsatellite instability (MSI), heavier tumour mutational burden (TMB), higher expression level of PDL1 and cells with CD8. Knockdown of APOA5 reduced HCC cell proliferation combining with elevating inflammation and ferroptosis levels. In conclusion, we considered APOA5 maybe a novel target for suppressing HCC via simultaneously elevating inflammation and ferroptosis levels, and signature constructed by seven IAF genes including ADH4, APOA5, CFHR3, CXCL8, FTCD, G6PD and PON1 can act as a biomarker for optimising the diagnosis, prognosis evaluation and immunotherapy options in HCC patients.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Ferroptose/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Imunoterapia , Inflamação/genética , Microambiente Tumoral/genética , Arildialquilfosfatase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...