Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Adv Sci (Weinh) ; : e2401944, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704733

RESUMO

2D magnetic materials hold substantial promise in information storage and neuromorphic device applications. However, achieving a 2D material with high Curie temperature (TC), environmental stability, and multi-level magnetic states remains a challenge. This is particularly relevant for spintronic devices, which require multi-level resistance states to enhance memory density and fulfil low power consumption and multi-functionality. Here, the synthesis of 2D non-layered triangular and hexagonal magnetite (Fe3O4) nanosheets are proposed with high TC and environmental stability, and demonstrate that the ultrathin triangular nanosheets show broad antiphase boundaries (bAPBs) and sharp antiphase boundaries (sAPBs), which induce multiple spin precession modes and multi-level resistance. Conversely, the hexagonal nanosheets display slip bands with sAPBs associated with pinning effects, resulting in magnetic-field-driven spin texture reversal reminiscent of "0" and "1" switching signals. In support of the micromagnetic simulation, direct explanation is offer to the variation in multi-level resistance under a microwave field, which is ascribed to the multi-spin texture magnetization structure and the randomly distributed APBs within the material. These novel 2D magnetite nanosheets with unique spin textures and spin dynamics provide an exciting platform for constructing real multi-level storage devices catering to emerging information storage and neuromorphic computing requirements.

2.
Nanotechnology ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38759635

RESUMO

The use of two-dimensional materials and van der Waals heterostructures holds great potential for improving the performance of memristors Here, we present SnS2/MoTe2heterostructure synaptic transistors. Benefiting from the ultra-low dark current of the heterojunction, the power consumption of the synapse is only 19 pJ per switching under 0.1 V bias, comparable to that of biological synapses. The synaptic device based on the SnS2/MoTe2demonstrates various synaptic functionalities, including short-term plasticity, long-term plasticity, and paired-pulse facilitation (PPF). In particular, the synaptic weight of the excitatory postsynaptic current (EPSC) can reach 109.8%. In addition, the controllability of the long-term potentiation (LTP) and long-term depression (LTD) are discussed. The dynamic range (Gmax/Gmin) and the symmetricity values of the synaptic devices are approximately 16.22 and 6.37, and the non-linearity is 1.79. Our study provides the possibility for the application of 2D material synaptic devices in the field of low-power information storage. .

3.
Opt Express ; 32(3): 3241-3250, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297550

RESUMO

Optical zoom plays an important role in realizing high-quality image magnification, especially in photography, telescopes, microscopes, etc. Compared to traditional bulky zoom lenses, the high versatility and flexibility of metalens design provide opportunities for modern electronic and photonic systems with demands for miniature and lightweight optical zoom. Here, we propose an ultra-thin, lightweight and compact bifocal zoom metalens, which consists of a conventional circular sub-aperture and a sparse annular sub-aperture with different focal lengths. The imaging resolutions of such single zoom metalens with 164 lp/mm and 117 lp/mm at magnifications of 1× and 2× have been numerically and experimentally demonstrated, respectively. Furthermore, clear zoom images of a dragonfly wing pattern have been also achieved using this zoom metalens, showing its distinctive aspect in biological imaging. Our results provide an approach for potential applications in integrated optical systems, miniaturized imaging devices, and wearable devices.

4.
ACS Appl Mater Interfaces ; 16(5): 6068-6077, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38258520

RESUMO

Deep-level defects in ß-Ga2O3 that worsen the response speed and dark current (Id) of photodetectors (PDs) have been a long-standing issue for its application. Herein, an in situ grown single-crystal Ga2O3 nanoparticle seed layer (NPSL) was used to shorten the response time and reduce the Id of metal-semiconductor-metal (MSM) PDs. With the NPSL, the Id was reduced by 4 magnitudes from 0.389 µA to 81.03 pA, and the decay time (τd1/τd2) decreased from 258/1690 to 62/142 µs at -5 V. In addition, the PDs with the NPSL also exhibit a high responsivity (43.5 A W-1), high specific detectivity (2.81 × 1014 Jones), and large linear dynamic range (61 dB) under 254 nm illumination. The mechanism behind the performance improvement can be attributed to the suppression of the deep-level defects (i.e., self-trapped holes) and increase of the Schottky barrier. The barrier height extracted is increased by 0.18 eV compared with the case without the NPSL. Our work contributes to understanding the relationship between defects and the performance of PDs based on heteroepitaxial ß-Ga2O3 thin films and provides an important reference for the development of high-speed and ultrasensitive deep ultraviolet PDs.

5.
Micromachines (Basel) ; 14(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38138367

RESUMO

The increasing demand for accurate imaging spectral information in remote sensing detection has driven the development of hyperspectral remote sensing instruments towards a larger view field and higher resolution. As the core component of the spectrometer slit, the designed length reaches tens of millimeters while the precision maintained within the µm level. Such precision requirements pose challenges to traditional machining and laser processing. In this paper, a high-precision air slit was created with a large aspect ratio through MEMS technology on SOI silicon wafers. In particular, a MEMS slit was prepared with a width of 15 µm and an aspect ratio exceeding 4000:1, and a spectral spectroscopy system was created and tested with a Hg-Cd light source. As a result, the spectral spectrum was linear within the visible range, and a spectral resolution of less than 1 nm was obtained. The standard deviation of resolution is only one-fourth of that is seen in machined slits across various view fields. This research provided a reliable and novel manufacturing technique for high-precision air slits, offering technical assistance in developing high-resolution wide-coverage imaging spectrometers.

6.
Nanotechnology ; 34(50)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37683623

RESUMO

Semi-floating gate transistors based on vdW materials are often used in memory and programmable logic applications. In this paper, we propose a semi-floating gate photoelectric p-n junction transistor structure which is stacked by InSe/h-BN/Gr. By modulating gate voltage, InSe can be presented as N-type and P-type respectively on different substrates, and then combined into p-n junction. Moreover, InSe/h-BN/Gr device can be switched freely between N-type resistance and p-n junction. The resistance value of InSe resistor and the photoelectric properties of the p-n junction are also sensitively modulated by laser. Under dark conditions, the rectification ratio of p-n junction can be as high as 107. After laser modulation, the device has a response up to 1.154 × 104A W-1, a detection rate up to 5.238 × 1012Jones, an external quantum efficiency of 5.435 × 106%, and a noise equivalent power as low as 1.262 × 10-16W/Hz1/2. It lays a foundation for the development of high sensitivity and fast response rate tunable photoelectric p-n junction transistor.

7.
ACS Appl Mater Interfaces ; 15(21): 26159-26165, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37191571

RESUMO

The morphological characteristics of the GaN nonpolar sidewalls with different crystal plane orientations were studied under various TMAH wet treatment conditions, and the effect of different morphological features on device carrier mobility was modeled and analyzed. After TMAH wet treatment, the morphology of the a-plane sidewall presents multiplied zigzag triangular prisms along the [0001] direction, which consist of two adjacent m-plane and c-plane on top. While along the [112̅0] direction, the m-plane sidewall is represented by thin, striped prisms with three m-plane and a c-plane on the side. The density and size of sidewall prisms were studied by varying the solution temperature and immersion period. The prism density decreases linearly as the solution temperature rises. With increased immersion time, both a-plane and m-plane sidewalls show smaller prism sizes. Vertical GaN trench MOSFET with nonpolar a- and m-plane sidewall channels were fabricated and characterized. By properly treated in TMAH solution, transistors with an a-plane sidewall conduction channel exhibit higher current density, from 241 to 423 A cm-2@VDS = 10 V, VGS = 20 V, and higher mobility, from 2.9 to 2.0 cm2 (V s)-1, compared to those of m-plane sidewall devices. The temperature dependence on mobility is also discussed, and a modeling analysis for the difference in carrier mobility is then performed.

8.
Nat Commun ; 14(1): 2183, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069148

RESUMO

Spintronics-based microwave devices, such as oscillators and detectors, have been the subject of intensive investigation in recent years owing to the potential reductions in size and power consumption. However, only a few concepts for spintronic amplifiers have been proposed, typically requiring complex device configurations or material stacks. Here, we demonstrate a spintronic amplifier based on two-terminal magnetic tunnel junctions (MTJs) produced with CMOS-compatible material stacks that have already been used for spin-transfer torque memories. We achieve a record gain (|S11 | > 2) for input power on the order of nW (<-40 dBm) at an appropriate choice of the bias field direction and amplitude. Based on micromagnetic simulations and experiments, we describe the fundamental aspects driving the amplification and show the key role of the co-existence in microwave emissions of a dynamic state of the MTJ excited by a dc current and the injection locking mode driven by the microwave input signal. Our work provides a way to develop a class of compact amplifiers that can impact the design of the next generation of spintronics-CMOS hybrid systems.

9.
Nanoscale ; 15(7): 3142-3149, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36723050

RESUMO

Spin-orbit torque (SOT) plays a significant role in spintronic logic and memory devices. However, due to the limited spin Hall angle and SOT symmetry in a heavy-metal-ferromagnet bilayer, further improving SOT efficiency and all-electric magnetization manipulation remain a challenge. Here we report enhanced SOT efficiency and all-electric switching in Au based magnetic structures, by inserting two-dimensional transition metal dichalcogenides (2D TMDs) with large spin-orbit coupling. With the TMD spacer insert, both damping-like and field-like SOTs are improved, and an unconventional out-of-plane damping-like SOT is induced, due to the interface orbital hybridization, modified spin-mixing conductance and orbital current. Moreover, current induced field-free magnetization switching is demonstrated in Au/WTe2/Ni and Au/MoS2/Ni devices, and it shows multiple intermediate states and can be efficiently controlled by an electric current. Our results open a path for increasing torques and expand the application of 2D TMDs in spintronic devices for neuromorphic computing.

10.
Nature ; 613(7944): 485-489, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653565

RESUMO

Antiferromagnetic spintronics1-16 is a rapidly growing field in condensed-matter physics and information technology with potential applications for high-density and ultrafast information devices. However, the practical application of these devices has been largely limited by small electrical outputs at room temperature. Here we describe a room-temperature exchange-bias effect between a collinear antiferromagnet, MnPt, and a non-collinear antiferromagnet, Mn3Pt, which together are similar to a ferromagnet-antiferromagnet exchange-bias system. We use this exotic effect to build all-antiferromagnetic tunnel junctions with large nonvolatile room-temperature magnetoresistance values that reach a maximum of about 100%. Atomistic spin dynamics simulations reveal that uncompensated localized spins at the interface of MnPt produce the exchange bias. First-principles calculations indicate that the remarkable tunnelling magnetoresistance originates from the spin polarization of Mn3Pt in the momentum space. All-antiferromagnetic tunnel junction devices, with nearly vanishing stray fields and strongly enhanced spin dynamics up to the terahertz level, could be important for next-generation highly integrated and ultrafast memory devices7,9,16.

11.
Nanomaterials (Basel) ; 12(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35683740

RESUMO

The spin-orbit torques (SOTs) in the heavy metal (HM)/ferromagnetic metal (FM) structure hold promise for next-generation low-power and high-density spintronic memory and logic applications. For the SOT switching of a perpendicular magnetization, an external magnetic field is inevitable for breaking the mirror symmetry, which is not practical for high-density nanoelectronics applications. In this work, we study the current-induced field-free SOT switching and SOT perpendicular effective field (Hzeff) in a variety of laterally asymmetric multilayers, where the asymmetry is introduced by growing the FM layer in a wedge shape. We show that the design of structural asymmetry by wedging the FM layer is a universal scheme for realizing field-free SOT switching. Moreover, by comparing the FM layer thickness dependence of (Hzeff) in different samples, we show that the efficiency (ß =Hzeff/J, J is the current density) is sensitive to the HM/FM interface and the FM layer thickness. The sign of ß for thin FM thicknesses is related to the spin Hall angle (θSH) of the HM layer attached to the FM layer. ß changes its sign with the thickness of the FM layer increasing, which may be caused by the thickness dependence of the work function of FM. These results show the possibility of engineering the deterministic field-free switching by combining the symmetry breaking and the materials design of the HM/FM interface.

12.
ACS Appl Mater Interfaces ; 13(42): 50213-50219, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34637265

RESUMO

Ambipolar photoresponsivity mainly originates from intrinsic or interfacial defects. However, these defects are difficult to control and will prolong the response speed of the photodetector. Here, we demonstrate tunable ambipolar photoresponsivity in a photodetector built from vertical p-WSe2/n-InSe heterostructures with photogating effect, exhibiting ultrahigh photoresponsivity from -1.76 × 104 to 5.48 × 104 A/W. Moreover, the photodetector possesses broadband photodetection (365-965 nm), an ultrahigh specific detectivity (D*) of 5.8 × 1013 Jones, an external quantum efficiency of 1.86 × 107%, and a rapid response time of 20.8 ms. The WSe2/InSe vertical architecture has promising potential in developing high-performance nano-optoelectronics.

13.
Nanoscale ; 13(35): 14688-14693, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533556

RESUMO

Recent advances in two-dimensional van der Waals (2D vdW) magnets provide new platforms to study their magnetism in reduced dimensions. However, most of the studies performed to date have been limited to low temperatures. Here, we report the proximity effect of a 2D vdW magnet Fe3GeTe2 (FGT) on nickel (Ni) films at room temperature. Ferromagnetic resonance measurements show that FGT can increase the perpendicular magnetic anisotropy (PMA) and magnetic damping of the adjacent Ni film. Such an interfacial effect is observed at room temperature, and becomes more pronounced as the temperature decreases. A similar effect is also achieved in another 2D heterostructure of Cr2Ge2Te6/Ni, implying its universality in a variety of 2D magnetic materials. Our work provides a new approach for utilizing 2D magnets in spintronics at room temperature.

14.
Sci Rep ; 11(1): 8504, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875725

RESUMO

Tetherless sensors have long been positioned to enable next generation applications in biomedical, environmental, and industrial sectors. The main challenge in enabling these advancements is the realization of a device that is compact, robust over time, and highly efficient. This paper presents a tetherless optical tag which utilizes optical energy harvesting to realize scalable self-powered devices. Unlike previous demonstrations of optically coupled sensor nodes, the device presented here amplifies signals and encodes data on the same optical beam that provides its power. This optical interrogation modality results in a highly efficient data link. These optical tags support data rates up to 10 Mb/s with an energy consumption of ~ 3 pJ/bit. As a proof-of-concept application, the optical tag is combined with a spintronic microwave detector based on a magnetic tunnel junction (MTJ). We used this hybrid opto-spintronic system to perform self-powered transduction of RF waves at 1 GHz to optical frequencies at ~ 200 THz, while carrying an audio signal across (see Supplementary Data for audio files).

15.
J Phys Chem Lett ; 12(9): 2394-2399, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33661010

RESUMO

Topological insulators (TIs) with spin-momentum-locked metallic surface states can exert giant spin-orbit torques, offering great potential in energy-efficient magnetic memory devices. In this work, temperature (T)-dependent SOT efficiencies are investigated in Sb2Te3/Ta/TbCo heterostructures with perpendicular magnetic anisotropy. The spin Hall angle θSH is around 0.16 at room temperature (RT), which is much higher than that of the control sample without TI. Moreover, as T decreases from RT down to 10 K, θSH exhibits a conspicuous 5-fold enhancement. Detailed analysis indicates that the θSH enhancement at reduced temperatures mainly results from the improved spin-polarized surface states, as evidenced from the continuously increased ratio of surface-to-bulk conduction. The θSH difference between 20 and 10 nm Sb2Te3 gradually shrinks with the increase of T, which is due to the increase of bulk state contribution. Our findings provide a deep insight into the spin transport mechanisms and robust charge-spin conversion in TIs.

16.
Nanoscale ; 12(44): 22808-22816, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33174554

RESUMO

Two-dimensional (2D) magnetic materials with high perpendicular anisotropy, such as Fe3GeTe2, have the potential to build spintronic devices with better performance and lower power consumption. Here, we examine microwave emissions in Fe3GeTe2/Pt spin Hall nano-oscillators with different numbers of layers of Fe3GeTe2 using micromagnetic simulations. We predict that auto-oscillation with a frequency of >30 GHz can be driven by spin-orbit torque (SOT) and the frequency is tunable with current. Observing the dynamic behaviors of magnetization dynamic reveals that non-localized spin-wave propagates in Fe3GeTe2 with a spatially varied wavelength due to Joule heat and forms certain special bubble-like magnetic structure. Our results indicate SHNOs comprising a 2D magnetic material has the potential to develop future spintronic oscillator with low power consumption and high performance.

17.
Adv Mater ; 32(26): e2002300, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32449568

RESUMO

One of the main bottleneck issues for room-temperature antiferromagnetic spintronic devices is the small signal read-out owing to the limited anisotropic magnetoresistance in antiferromagnets. However, this could be overcome by either utilizing the Berry-curvature-induced anomalous Hall resistance in noncollinear antiferromagnets or establishing tunnel-junction devices based on effective manipulation of antiferromagnetic spins. In this work, the giant piezoelectric strain modulation of the spin structure and the anomalous Hall resistance in a noncollinear antiferromagnetic metal-D019 hexagonal Mn3 Ga-is demonstrated. Furthermore, tunnel-junction devices are built with a diameter of 200 nm to amplify the maximum tunneling resistance ratio to more than 10% at room-temperature, which thus implies significant potential of noncollinear antiferromagnets for large signal-output and high-density antiferromagnetic spintronic device applications.

18.
Nat Commun ; 11(1): 1330, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165616

RESUMO

Black phosphorus (BP) is a promising two-dimensional layered semiconductor material for next-generation electronics and optoelectronics, with a thickness-dependent tunable direct bandgap and high carrier mobility. Though great research advantages have been achieved on BP, lateral synthesis of high quality BP films still remains a great challenge. Here, we report the direct growth of large-scale crystalline BP films on insulating silicon substrates by a gas-phase growth strategy with an epitaxial nucleation design and a further lateral growth control. The optimized lateral size of the achieved BP films can reach up to millimeters, with the ability to modulate thickness from a few to hundreds of nanometers. The as-grown BP films exhibit excellent electrical properties, with a field-effect and Hall mobility of over 1200 cm2V-1s-1 and 1400 cm2V-1s-1 at room temperature, respectively, comparable to those exfoliated from BP bulk crystals. Our work opens the door for broad applications with BP in scalable electronic and optoelectronic devices.

19.
ACS Appl Mater Interfaces ; 12(7): 8855-8861, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31984722

RESUMO

The operation mechanism of giant magnetoresistance (GMR) sensors relies on the linear response of the magnetization direction to an external magnetic field. Since the magnetic anisotropy of ferromagnetic layers can be manipulated by a strain-mediated magnetoelectric coupling effect, we propose a tunable GMR magnetic field sensor design that allows for voltage tuning of the linear range and sensitivity. A spin valve structure Ru/CoFe/Cu/CoFe/IrMn/Ru is grown on a PMN-PT (011) substrate, and the magnetization directions of ferromagnetic layers can be controlled by an electric field. An adjustable linear magnetoresistance is therefore induced. Based on the magnetoelectric coupling effect and spin valve, we prepared tunable GMR magnetic field sensors with bridge structures. The linear sensing range of a DC magnetic field is enhanced 6 times by applying an electric field of 14 kV/cm. The electrically tunable GMR sensor fulfills the requirements to work at different magnetic field ranges in the same configuration, therefore exhibiting great potential for applications in the Internet of things.

20.
Nanoscale Adv ; 2(3): 1309-1317, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133072

RESUMO

Spintronics exhibits significant potential for a neuromorphic computing system with high speed, high integration density, and low dissipation. In this article, we propose an ultralow-dissipation skyrmion-based nanodevice composed of a synthetic antiferromagnet (SAF) and a piezoelectric substrate for neuromorphic computing. Skyrmions/skyrmion bubbles can be generated in the upper layer of an SAF with a weak anisotropy energy (E a). Applying a weak electric field on the heterostructure, interlayer antiferromagnetic coupling can be manipulated, giving rise to a continuous transition between a large skyrmion bubble and a small skyrmion. This thus induces a variation of the resistance of a magnetic tunneling junction that can mimic the potentiation/depression of a synapse and the leaky-integral-and-fire function of a neuron at a cost of a very low energy consumption of 0.3 fJ. These results pave a way to ultralow power neuromorphic computing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...