Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(13): 5861-5870, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38411596

RESUMO

Coexistence and switching between spin-crossover (SCO) and single molecular magnet (SMM) behaviours in one single complex may lead to materials that exhibit bi-stable and stimuli sensitive properties in a wide temperature range and under multiple conditions; unfortunately, the conflict and dilemma in the principle of approaching SCO and SMM molecules make it particularly difficult; at low temperature, low spin (LS) SCO molecules possess highly symmetrical geometry and isotropic spins, which are not suitable for SMM behaviour. Herein, we overcome this issue by using a rationally designed Co(II) mononuclear complex [Co(MeOphterpy)2] (ClO4)2 (1; MeOphterpy = 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine), the magnetic properties of which reversibly respond to desolvation and solvation. The solvated structure reinforced a low distortion of the coordination sphere via hydrogen bonding between ligands and methanol molecules, while in the desolvated structure a methoxy group flipping occurred, increasing the distortion of the coordination sphere and stabilising the HS state at low temperature, which exhibited a field-induced slow magnetic relaxation, resulting in a reversible switching between SCO and SMM properties within one molecule.

2.
Dalton Trans ; 51(19): 7420-7435, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35506589

RESUMO

Four series of lanthanide-based coordination polymers (LnCPs), namely [Ln(Br4bdc)1.5(MeOH)3] (1Ln; Ln = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy), [Ln2(Br4bdc)2(NO3)2(MeOH)4] (2Ln; Ln = Ce, Pr, Nd, Sm), [Ln(Br4bdc)(NO3)(MeOH)] (3Ln; Ln = Gd, Tb, Dy), and [Ln2(Br4bdc)3(H2O)2.3(MeOH)2.7] (4Ln; Ln = Gd, Tb, Dy) have been synthesized by reacting hydrated lanthanide(III) salts with tetrabromobenzene-1,4-dicarboxylic acid (H2Br4bdc) in different solvents under solvothermal conditions. The structural diversity found in the system mainly resulted from the effects of anions, solvents, and the variation in the ionic radii of the lanthanide(III) ions. Compounds in series 1Ln feature a two-dimensional (2D) layered structure with sql topology based on {(Ln(COO)2)2(µ-COO)2} secondary building units (SBUs). Compounds in series 2Ln and 3Ln comprise, respectively, infinite uniform and alternate chains of {Ln(COO)2}n SBUs that are assembled into a similar network topology to 1Ln. Meanwhile, compounds in series 4Ln feature 3D coordination networks of a pcu α-Po topological net consisting of binuclear {Ln2(COO)3} SBUs. The formation of polymeric networks in series 1Ln-4Ln is facilitated by the numerous coordination sites of the ligand Br4bdc2- and the fact that its bromine atoms can participate in the formation of various types of intermolecular interactions. The solid-state photoluminescence studies on Eu- (1Eu) and Tb- (1Tb, 3Tb, 4Tb) containing compounds indicate that the Br4bdc2- ligands can efficiently sensitize Eu3+ and Tb3+ emission. Notably, such compounds exhibit highly sensitive fluorescence sensing for acetone, water, and Fe3+ ions via the fluorescence quenching effect. As the representatives of the series, activated 1Eu, 2Pr, 3Tb, and 4Tb show the maximum CO2 uptake capacities of 170.4, 273.7, 255.3, and 303.5 cm3 g-1, respectively, at 50 bar and 298 K with good repeatability of the adsorption-desorption properties. Magnetic studies indicate that the Gd- and Dy-based compounds 1Gd, 1Dy, 3Gd, 3Dy, and 4Gd show simple paramagnetic behaviours, whereas compound 4Dy exhibits weak ferromagnetic interactions.

3.
Chemistry ; 28(5): e202103367, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34846768

RESUMO

Magnetoelectric (ME) materials exhibiting coupled electric and magnetic properties are of significant interest because of their potential use in memory storage devices, new sensors, or low-consumption devices. Herein, we report a new category of ME material that shows liquid crystal (LC), ferroelectric (FE), and field-induced single molecule magnet (SMM) behaviors. Co(II) complex incorporating alkyl chains of type [Co(3C16 -bzimpy)2 ](BF4 )2 (1; 3C16 -bzimpy=2,2'-(4-hexadecyloxy-2,6-diyl)bis(1-hexadecyl-1H-benzo[d]imidazole)) displayed a chiral smectic C mesophase in the temperature range 321 K-458 K, in which distinct FE behavior was observed, with a remnant polarization (88.3 nC cm-2 ). Complex 1 also exhibited field-induced slow magnetic relaxation behavior that reflects the large magnetic anisotropy of the Co(II) center. Furthermore, the dielectric property of 1 was able to be tuned by an external magnetic field occurring from both spin-lattice coupling and molecular orientational variation. Clearly, this multifunctional compound, combining LC, FE, and SMM properties, represents an entry to the development of a range of next-generation ME materials.

4.
Phys Chem Chem Phys ; 23(42): 24233-24238, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34668901

RESUMO

The interlayer spaces in two dimensional (2D) layered materials such as graphene, metal oxides and metal chalcogenides can be used in a number of roles that include the trapping of gases, for ion transfer and for water purification applications. In such spaces, "inner" pressure occurs on guest species enclosed between the layers and its variation can, in principal, be used for precisely controlling particular guest properties. In this study, a mixture of two 2D materials including graphene oxide (GO) and nickel hydroxide (Ni(OH)2), was employed to yield an anisotropic GO-Ni(OH)2 hybrid 2D sheet. The inner pressure associated with this material was able to be tuned by reduction of the GO (to yield rGO) and this in turn was shown to affect the magnetic behaviour of Ni(OH)2. The ferromagnetic transition temperature (Tc) for Ni(OH)2 decreases as the interlayer distance became shorter, which is opposite to the behaviour observed for the application of hydrostatic pressure to the hybrid sheet. The uniaxial pressure affecting the interlayer of the 2D material, and generated by the reduction of GO to rGO, has the potential to not only influence the behaviour of a range of magnetic materials, but also individual properties of other types of functional materials.

5.
Dalton Trans ; 50(22): 7843-7853, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008663

RESUMO

The magnetic properties and structural aspects of the 1-D cobalt(ii) complexes, [Co(pyterpy)Cl2]·2H2O (1·2H2O; pyterpy = 4'-(4'''-pyridyl)-2,2':6',2''-terpyridine) and [Co(pyethyterpy)Cl2]·2H2O (2·2H2O; pyethyterpy = 4'-((4'''-pyridyl)ethynyl)-2,2':6',2''-terpyridine) are reported. In each complex the central cobalt(ii) ion displays an octahedral coordination environment composed of three nitrogen donors from the terpyridine moiety, a nitrogen donor from a pyridyl group and two chloride ligands which occupy the axial sites. 1·2H2O exhibits abrupt spin-crossover (SCO) behaviour (T1/2↓ = 218 K; T1/2↑ = 227 K) along with a thermal hysteresis loop, while 2·2H2O and the dehydrated species 1 and 2 exhibit high-spin (HS) states at 2-300 K as well as field-induced single-molecule magnet (SMM) behaviour attributed to the presence of magnetic anisotropic HS cobalt(ii) species (S = 3/2). 1·2H2O exhibited reversible desorption/resorption of its two water molecules, revealing reversible switching between SCO and SMM behaviour triggered by the dehydration/rehydration processes. Single crystal X-ray structural analyses revealed that 1·2H2O crystalizes in the orthorhombic space group Pcca while 2 and 2·2H2O crystallize in the monoclinic space group P2/n. Each of the 1-D chains formed by 1·2H2O in the solid state are bridged by hydrogen bonds between water molecules and chloride groups to form a 2-D layered structure. The water molecules bridging 1-D chains in 1·2H2O interact with the chloride ligands occupying the axial positions, complementing the effect of Jahn-Teller distortion and contributing to the abrupt SCO behaviour and associated stabilization of the LS state.

6.
Inorg Chem ; 60(9): 6731-6738, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33847127

RESUMO

A spin-crossover (SCO) active dinuclear Fe(II) triple helicate of the form [Fe2L3]4+ was combined with additional supramolecular components in order to manipulate the interhelical separation and steric congestion and to study the magneto-structural effects on the ensuing composite materials. A more separated array of SCO units produced more extensive spin-transitions, while a tightly arranged lattice environment stabilized the low-spin state. This study highlights the important interplay between crystal packing, intermolecualr interactions, and the magentic behavior of SCO materials.

7.
RSC Adv ; 11(40): 24709-24721, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481060

RESUMO

The influence of synthetic conditions on the solid-state structural formation of lanthanide(iii) complexes based on a hydrazide ligand have been investigated and reported. Depending on the solvents and reaction temperatures, the reactions of hydrated Ln(NO3)3 with a benzohydrazide (bzz) ligand afforded three classes of lanthanide(iii) coordination complexes viz. [Ln(bzz)(NO3)](NO3)2 (1Ln; Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5)), [Ln(bzz)(ben)3(H2O)]·H2O (2Ln; Ln = Pr (6), Nd (7), Sm (8), Eu (9), Gd (10), Tb (11), Dy (12), Er (13)), and [Ln3(ben)3] (3Ln; Ln = Eu (14), Gd (15), Tb (16), Dy (17), Er (18), Tm (19), Yb (20), Lu (21)). Complexes 1-5 in series 1Ln were isolated by slow evaporation of their isopropanol solutions at ambient temperature, and the complexes display similar discrete structures bearing distinct intermolecular N-H⋯O hydrogen bonds to generate a three-dimensional (3D) supramolecular architecture. Complexes 6-13 in series 2Ln were obtained under hydrothermal conditions at 110 °C where the in situ generated benzoate (ben) ligands participated in the formation of one-dimensional (1D) coordination polymers (CPs) with the bzz ligands. At a temperature of 145 °C the hydrothermal conditions result in the formation of the thermodynamically more stable products of 14-21 in series 3Ln, in which the bzz ligand underwent complete in situ hydrolysis to create the ben ligand. These coordination assemblies feature 1D zigzag chains that are formed by unusual low coordination numbers of the six- and seven-fold coordinated Ln3+ centers bridged by the ben ligands in µ 2- and µ 3-coordination modes. Notably, the chain structures of 2Ln can be transformed into the zigzag tape-like structures of 3Ln upon heating the crystalline samples to 400 °C in air. In the solid state at room temperature, the Eu- (2, 9, 14) and Tb- (4, 11, 16) containing complexes emit red and green light, respectively. The luminescence investigations show that the Eu- (9, 14) and Tb-(11, 16) based CPs could be used as fluorescent probes for acetone and Co2+ ions via an energy competition mechanism. Meanwhile, the Gd- (10, 15) and Dy- (12, 17) based CPs show typical antiferromagnetic interactions.

8.
Dalton Trans ; 50(2): 494-498, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33367344

RESUMO

The synthesis of [M(dimphen)(NCS)2] (1; M = FeII), (2; M = CoII), (3; M = MnII) and [Fe(dimphen)(NCSe)2] (4), where dimphen = [1,2-bis(9-methyl-1,10-phenanthrolin-2-yl)ethane], are reported. The crystal packing structures of 1-3, show intermolecular π-π stacking and NCSSCN interactions. The complex 1 shows ferromagnetic interaction, and the complex 2 displays single-molecular magnet behaviour.

9.
Chem Commun (Camb) ; 56(62): 8838-8841, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32632428

RESUMO

Reported herein, the synthesis as well as the structural and magnetic characterisation of the largest reported dinuclear Fe(ii) triple helicate system to exhibit spin crossover-and also a rare example of a 273° helical twist using aromatic spacers-is presented, with exploration of the two-step spin-transition observed.

10.
RSC Adv ; 10(9): 5040-5049, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35498313

RESUMO

Two Fe(ii)-based coordination polymers [Fe(tpmd)2(NCS)2]·5.5H2O (1) and [Fe(tpmd)2(NCSe)2]·7H2O (2) with the framework of square-grid type have been assembled from FeSO4·7H2O, N,N,N',N'-tetrakis(pyridin-4-yl)methanediamine (tpmd), and KNCS/KNCSe in methanol and characterized. By utilizing two pyridine groups of a tpmd ligand, 1 and 2 are formed in two-dimensional layered structures through coordination of octahedral iron(ii) ions with the tpmd to NCS-/NCSe- ligands in which they have a supramolecular isomorphous conformation. 1 shows a paramagnetic behavior between 2 and 300 K, while 2 exhibits two-step spin crossover (ca. 145 and 50 K) in the temperature range due to the coordination of NCSe- ligands. At 300 K 2 is fully high-spin state. However, at 100 K 2 becomes ca. 50% high spin and 50% low spin iron(ii) ions, which is verified by magnetic moments. In the structural analysis of 2 at 100 K, two different layers are observed with different bond distances around iron(ii) ions in which the layers are stacked alternately.

11.
Dalton Trans ; 48(27): 9935-9938, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31197300

RESUMO

The self-assembly of a mixed-spin [Fe4L6]8+ tetrahedral cage is reported. The cage undergoes temperature induced spin-crossover with a 29 K hystereisis. Variable temperature X-ray photoelectron spectroscopy (VT-XPS), combined with SQUID data, allowed differentiation between the surface and bulk magnetic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...