Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemMedChem ; 18(11): e202200631, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883965

RESUMO

Due to worldwide increasing resistances, there is a considerable need for antibacterial compounds with modes of action not yet realized in commercial antibiotics. One such promising structure is the acetyl-CoA carboxylase (ACC) inhibitor moiramide B which shows strong antibacterial activity against gram-positive bacteria such as Bacillus subtilis and weaker activities against gram-negative bacteria. However, the narrow structure-activity relationship of the pseudopeptide unit of moiramide B represents a formidable challenge for any optimization strategy. In contrast, the lipophilic fatty acid tail is considered an unspecific vehicle responsible only for the transport of moiramide into the bacterial cell. Here we show that the sorbic acid unit, in fact, is highly relevant for ACC inhibition. A hitherto undescribed sub-pocket at the end of the sorbic acid channel binds strongly aromatic rings and allows the development of moiramide derivatives with altered antibacterial profiles including anti-tubercular activity.


Assuntos
Antibacterianos , Ácido Sórbico , Antibacterianos/farmacologia , Antibacterianos/química , Amidas/farmacologia , Succinimidas/farmacologia , Testes de Sensibilidade Microbiana
2.
J Exp Clin Cancer Res ; 42(1): 25, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670508

RESUMO

BACKGROUND: Intrinsic or acquired resistance to HER2-targeted therapy is often a problem when small molecule tyrosine kinase inhibitors or antibodies are used to treat patients with HER2 positive breast cancer. Therefore, the identification of new targets and therapies for this patient group is warranted. Activated choline metabolism, characterized by elevated levels of choline-containing compounds, has been previously reported in breast cancer. The glycerophosphodiesterase EDI3 (GPCPD1), which hydrolyses glycerophosphocholine to choline and glycerol-3-phosphate, directly influences choline and phospholipid metabolism, and has been linked to cancer-relevant phenotypes in vitro. While the importance of choline metabolism has been addressed in breast cancer, the role of EDI3 in this cancer type has not been explored. METHODS: EDI3 mRNA and protein expression in human breast cancer tissue were investigated using publicly-available Affymetrix gene expression microarray datasets (n = 540) and with immunohistochemistry on a tissue microarray (n = 265), respectively. A panel of breast cancer cell lines of different molecular subtypes were used to investigate expression and activity of EDI3 in vitro. To determine whether EDI3 expression is regulated by HER2 signalling, the effect of pharmacological inhibition and siRNA silencing of HER2, as well as the influence of inhibiting key components of signalling cascades downstream of HER2 were studied. Finally, the influence of silencing and pharmacologically inhibiting EDI3 on viability was investigated in vitro and on tumour growth in vivo. RESULTS: In the present study, we show that EDI3 expression is highest in ER-HER2 + human breast tumours, and both expression and activity were also highest in ER-HER2 + breast cancer cell lines. Silencing HER2 using siRNA, as well as inhibiting HER2 signalling with lapatinib decreased EDI3 expression. Pathways downstream of PI3K/Akt/mTOR and GSK3ß, and transcription factors, including HIF1α, CREB and STAT3 were identified as relevant in regulating EDI3 expression. Silencing EDI3 preferentially decreased cell viability in the ER-HER2 + cells. Furthermore, silencing or pharmacologically inhibiting EDI3 using dipyridamole in ER-HER2 + cells resistant to HER2-targeted therapy decreased cell viability in vitro and tumour growth in vivo. CONCLUSIONS: Our results indicate that EDI3 may be a potential novel therapeutic target in patients with HER2-targeted therapy-resistant ER-HER2 + breast cancer that should be further explored.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Colina/metabolismo , Colina/uso terapêutico , RNA Interferente Pequeno , Receptor ErbB-2/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fosfolipases/genética
3.
J Med Chem ; 65(9): 6643-6655, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35486541

RESUMO

Despite the clinical efficacy of epidermal growth factor receptor (EGFR) inhibitors, a subset of patients with non-small cell lung cancer displays insertion mutations in exon20 in EGFR and Her2 with limited treatment options. Here, we present the development and characterization of the novel covalent inhibitors LDC8201 and LDC0496 based on a 1H-pyrrolo[2,3-b]pyridine scaffold. They exhibited intense inhibitory potency toward EGFR and Her2 exon20 insertion mutations as well as selectivity over wild type EGFR and within the kinome. Complex crystal structures with the inhibitors and biochemical and cellular on-target activity document their favorable binding characteristics. Ultimately, we observed tumor shrinkage in mice engrafted with patient-derived EGFR-H773_V774insNPH mutant cells during treatment with LDC8201. Together, these results highlight the potential of covalent pyrrolopyridines as inhibitors to target exon20 insertion mutations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutagênese Insercional , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
4.
Antiviral Res ; 161: 63-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452929

RESUMO

Infections with the human cytomegalovirus (HCMV) cause serious medical problems including organ rejection and congenital infection. Treatment of HCMV infections with currently available medication targeting viral enzymes is often accompanied with severe side effects and the occurrence of drug-resistant viruses. This demands novel therapeutical approaches like targeting genetically stable host cell proteins that are crucial for virus replication. Although numerous experimental drugs with promising in vitro efficacy have been identified, the lack of available data in animal models limits their potential for further clinical development. Recently, we described the very strong in vitro antiherpesviral activity of the NF-κB inhibitor TF27 and the CDK7 inhibitor LDC4297 at low nanomolar concentrations. In the present study, we present first data for the in vivo efficacy of both experimental drugs using an established cytomegalovirus animal model (murine CMV replication in immunodefective Rag -/- mice). The main findings of this study are (i) a strong inhibitory potency against beta- and gamma-herpesviruses of both compounds in vitro, (ii) even more important, a pronounced anticytomegaloviral activity also exerted in vivo, that resulted from (iii) a restriction of viral replication to the site of infection, thus preventing organ dissemination, (iv) in the absence of major compound-associated adverse events. Thus, we provide evidence for a strong antiviral potency in vivo and proof-of-concept for both drugs, which may encourage their further drug development, possibly including pharmacologically optimized derivatives, for a potential use in future antiherpesviral treatment.


Assuntos
Antivirais/farmacologia , Infecções por Citomegalovirus/tratamento farmacológico , Muromegalovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Drogas em Investigação/farmacologia , Camundongos , Camundongos Knockout , Testes de Sensibilidade Microbiana , Muromegalovirus/fisiologia , Estudo de Prova de Conceito , Pirazóis/farmacologia , Triazinas/farmacologia
5.
Elife ; 62017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29168691

RESUMO

Cilia are small, antenna-like structures on the surface of eukaryotic cells that harbor a unique set of sensory proteins, including GPCRs and other membrane proteins. The transport of these proteins involves the BBSome, an eight-membered protein complex that is recruited to ciliary membranes by the G-protein Arl6. BBSome malfunction leads to Bardet-Biedl syndrome, a ciliopathy with severe consequences. Short ciliary targeting sequences (CTS) have been identified that trigger the transport of ciliary proteins. However, mechanistic studies that relate ciliary targeting to BBSome binding are missing. Here we used heterologously expressed BBSome subcomplexes to analyze the complex architecture and to investigate the binding of GPCRs and other receptors to the BBSome. A stable heterohexameric complex was identified that binds to GPCRs with interactions that only partially overlap with previously described CTS, indicating a more complex recognition than anticipated. Arl6•GTP does not affect these interactions, suggesting no direct involvement in cargo loading/unloading.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Multimerização Proteica , Humanos , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo
6.
Nat Commun ; 7: 11366, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27063844

RESUMO

The phosphodiesterase 6 delta subunit (PDE6δ) shuttles several farnesylated cargos between membranes. The cargo sorting mechanism between cilia and other compartments is not understood. Here we show using the inositol polyphosphate 5'-phosphatase E (INPP5E) and the GTP-binding protein (Rheb) that cargo sorting depends on the affinity towards PDE6δ and the specificity of cargo release. High-affinity cargo is exclusively released by the ciliary transport regulator Arl3, while low-affinity cargo is released by Arl3 and its non-ciliary homologue Arl2. Structures of PDE6δ/cargo complexes reveal the molecular basis of the sorting signal which depends on the residues at the -1 and -3 positions relative to farnesylated cysteine. Structure-guided mutation allows the generation of a low-affinity INPP5E mutant which loses exclusive ciliary localization. We postulate that the affinity to PDE6δ and the release by Arl2/3 in addition to a retention signal are the determinants for cargo sorting and enrichment at its destination.


Assuntos
Cílios/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fatores de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/metabolismo , Animais , Linhagem Celular , Polarização de Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Guanosina Trifosfato/metabolismo , Inositol Polifosfato 5-Fosfatases , Cinética , Camundongos , Modelos Biológicos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Mutantes/metabolismo , Neuropeptídeos/metabolismo , Ligação Proteica , Prenilação de Proteína , Sinais Direcionadores de Proteínas , Estrutura Secundária de Proteína , Transporte Proteico , Proteína Enriquecida em Homólogo de Ras do Encéfalo
7.
Biol Chem ; 395(2): 169-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24246286

RESUMO

Septins form oligomeric complexes consisting of septins from different subgroups, which form filaments that are involved in a number of biological processes. They are GTP-binding proteins that contain all the necessary elements to perform the general GDP-to-GTP conformational switch. It is however unclear whether or not such a switch is important for the dynamics of septin filaments. Here we investigate the complex GTPase reaction of members of each of the four human septin groups, which is dominated by the stability of dimer formation via the nucleotide binding or so-called G-interface. The results also show that the actual hydrolysis reaction is very similar for three septin groups in the monomeric state while the Sept6 has no GTPase activity. Sept7, the only member of the Sept7 subgroup, forms a very tight G-interface dimer in the GDP-bound state. Here we show that the stability of the interface is dramatically decreased by exchanging GDP with a nucleoside triphosphate, which is believed to influence filament formation and dynamics via Sept7.


Assuntos
Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Septinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Hidrólise , Isoformas de Proteínas/metabolismo , Multimerização Proteica
8.
Biol Chem ; 392(8-9): 791-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21824007

RESUMO

Septins constitute a family of conserved guanine nucleotide binding proteins found in a wide range of organisms from fungi to mammals. Members of the family share a canonical G-domain with N- and C-terminal extensions. G-domains assemble into hetero-oligomeric complexes which form non-polarised filaments or rings. Linear filaments are formed between the G-domains using either the guanine nucleotide binding site (G interface) or N- and C-terminal extensions (NC interface). Sept7 is a unique among the 13 human septins in that it occupies the ends of hexameric building blocks which assemble into non-polarised filaments. To gain insight into its particular properties we performed structural and biochemical studies on Sept7. We solved the crystal structure of a Sept7 dimer in the GDP-bound state. The structure and biochemistry of Sept7 provide new insights into the dynamics of the G interface and outline the differences in the properties of Sept7 compared to the members of group 2 septins.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Citoesqueleto/metabolismo , Septinas/química , Septinas/metabolismo , Proteínas de Ciclo Celular/genética , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Humanos , Mutagênese Sítio-Dirigida , Ligação Proteica , Septinas/genética
9.
Proc Natl Acad Sci U S A ; 106(39): 16592-7, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19805342

RESUMO

Septins constitute a group of GTP-binding proteins involved in cytokinesis and other essential cellular functions. They form heterooligomeric complexes that polymerize into nonpolar filaments and are dynamic during different stages of the cell cycle. Posttranslational modifications and interacting partners are widely accepted regulators of septin filament function, but the contribution of nucleotide is undefined due to a lack of detailed structural information. Previous low-resolution structures showed that the G domain assembles into a linear polymer with 2 different interfaces involving the N and C termini and the G binding sites. Here we report the crystal structure of SEPT2 bound to GppNHp at 2.9 A resolution. GTP binding induces conformational changes in the switch regions at the G interfaces, which are transmitted to the N-terminal helix and also affect the NC interface. Biochemical studies and sequence alignment suggest that a threonine, which is conserved in certain subgroups of septins, is responsible for GTP hydrolysis. Although this threonine is not present in yeast CDC3 and CDC11, its mutation in CDC10 and CDC12 induces temperature sensitivity. Highly conserved contact residues identified in the G interface are shown to be necessary for Cdc3-10, but not Cdc11-12, heterodimer formation and cell growth in yeast. Based on our findings, we propose that GTP binding/hydrolysis and the nature of the nucleotide influence the stability of interfaces in heterooligomeric and polymeric septins and are required for proper septin filament assembly/disassembly. These data also offer a first rationale for subdividing human septins into different functional subgroups.


Assuntos
Proteínas de Ligação ao GTP/química , Guanosina Trifosfato/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólise , Camundongos , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Septinas
10.
Chemistry ; 15(21): 5230-44, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19360821

RESUMO

Aqueous solutions of ternary ortho-chalcogenidostannate anions [SnE(1)(4-x)E(2)(x)](4-) (E(1), E(2) = S, Se, Te) have been generated following different routes that all lead to equilibria of all possible permutations of binary and ternary anions. This has been rationalized by means of NMR studies that can be explained by calculations using density functional theory (DFT) methods. Thus, if one reacts such solutions with transition-metal ions, quaternary M/Sn/E(1)/E(2) anions are obtained, which exhibit coordination by different ternary chalcogenidostannate ligands. The electronic excitation energies of the corresponding alkali metal salts lie between the E(g) values of compounds containing either M/Sn/E(1) or M/Sn/E(2) anions. In this way, we provide a simple approach toward a library of semiconductor compounds with finely-tuned optoelectronic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...