Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132317

RESUMO

The human gut microbiota can be compared to a fingerprint due to its uniqueness, hosting trillions of living organisms. Taking a sport-centric perspective, the gut microbiota might represent a physiological system that relates to health aspects as well as individualized performance in athletes. The athletes' physiology has adapted to their exceptional lifestyle over the years, including the diversity and taxonomy of the microbiota. The gut microbiota is influenced by several physiological parameters and requires a highly individual and complex approach to unravel the linkage between performance and the microbial community. This approach has been taken in this review, highlighting the functions that the microbial community performs in sports, naming gut-centered targets, and aiming for both a healthy and sustainable athlete and performance development. With this article, we try to consider whether initiating a microbiota analysis is practicable and could add value in elite sport, and what possibilities it holds when influenced through a variety of interventions. The aim is to support enabling a well-rounded and sustainable athlete and establish a new methodology in elite sport.

2.
Front Sports Act Living ; 5: 1213957, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37398557

RESUMO

Imagine blocking the opposing defense linemen in American football to protect your quarterback or creating gaps in the opponents' defense by setting blocks as a pivot player in handball. Such movements require a pushing action away from the body with the arms and stabilizing the whole body in different postural positions. Upper-body strength obviously plays an important role during American football and handball as well as in other game sports with opponent contact such as basketball. Yet, the availability of appropriate tests to measure upper-body strength serving sport-specific requirements seems limited. Therefore, a whole-body setup to measure isometric horizontal strength in game sport athletes was developed. The purpose of the study was to verify validity and reliability of this setup and present empirical data from game sport athletes. In 119 athletes, isometric horizontal strength was measured in three game-like standing positions (upright, slightly leaning forward and clearly leaning forward), each in three weight-shift conditions (80% of body weight on the left leg, 50/50% on both legs, 80% on the right leg). Also, handgrip strength on both sides was measured in all athletes using a dynamometer. Linear regression indicated that handgrip strength is a significant predictor of upper-body horizontal strength in female (ß = 0.70, p = 0.043) but not in male athletes (ß = 0.31, p = 0.117). As an expertise-related factor, linear regression indicated that the number of years played at the top level is a predictor of the upper-body horizontal relative strength measure (ß = 0.05, p = 0.03). Reliability analyses showed high levels of within-test reliability (ICC > 0.90) as well as test-retest reliability between two separate measurements (r > 0.77). The results indicate that the setup used in this study could be a valid tool for measuring performance-relevant upper-body horizontal strength in different game-like positions in professional game sport athletes.

3.
Front Psychol ; 14: 1192483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342635

RESUMO

Introduction: The dynamic structure of sport games forces players to make time-sensitive decisions and to initiate actions that may then have to be canceled in response to sudden changes in the game situation. Whether and up to which time already initiated movements can still be inhibited is an important criterion for game performance in elite sport. Research indicates that elite athletes show superior motor inhibition performance compared to recreational athletes. However, no study has examined whether differences also emerge among professional elite athletes themselves. Therefore, this study aimed to investigate whether motor inhibition performance is a differential feature among elite athletes, and whether inhibition performance increases with greater expertise. Methods: In total of 106 elite athletes (ice hockey, basketball, volleyball, American football, handball, and soccer) completed a PC-based procedure to determine motor inhibition performance using the stop-signal reaction time (SSRT) task for hands and feet. In addition, an expertise score was determined for each elite athlete. Multiple linear regression was used to calculate the relationship between expertise and SSRT. Results: Results showed that the expertise score of the elite athletes was between 3.7 and 11.7 out of 16 possible points (MExpertise = 6.8 points, SD = 1.76). The average SSRT of the hands was 224.0 ms (SD = 35.0); of the feet, 257.9 ms (SD = 48.5). Regression results showed a significant relationship between expertise and SSRT (F(2,101) = 9.38, p = 0.04, R2 = 0.06). SSRTs of the hands were significant predictors of expertise (b = -0.23, t = -2.1, p = 0.04). Discussion: Taken together, results suggest that elite athletes with higher expertise outperform elite athletes with lower expertise, indicating that it is possible to differentiate within elite athletes with respect to inhibition performance of the hands. However, whether expertise affects inhibition performance or vice versa cannot be answered at present.

4.
PeerJ ; 10: e14412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36447512

RESUMO

Background: Studies on motor imagery (MI) practice based on different designs and training protocols have reported changes in maximal voluntary contraction (MVC) strength. However, to date, there is a lack of information on the effects of MI training on contractile properties of the trained muscle. Methods: Forty-five physically active sport science students (21 female) were investigated who trained three times per week over a 4-week period in one of three groups: An MI group conducted MI practice of maximal isometric contraction of the biceps brachii; a physical exercise (PE) group physically practiced maximal isometric contractions of the biceps brachii in a biceps curling machine; and a visual imagery (VI) group performed VI training of a landscape. A MVC test of the arm flexors was performed in a biceps curling machine before and after 4 weeks of training. The muscular properties of the biceps brachii were also tested with tensiomyography measurements (TMG). Results: Results showed an interaction effect between time and group for MVC (p = 0.027, η 2 = 0.17), with a higher MVC value in the PE group (Δ5.9%) compared to the VI group (Δ -1.3%) (p = 0.013). MVC did not change significantly in the MI group (Δ2.1%). Analysis of muscle contractility via TMG did not show any interaction effects neither for maximal radial displacement (p = 0.394, η 2 = 0.05), delay time (p = 0.79, η 2 = 0.01) nor contraction velocity (p = 0.71, η 2 = 0.02). Conclusion: In spite of MVC-related changes in the PE group due to the interventions, TMG measurements were not sensitive enough to detect concomitant neuronal changes related to contractile properties.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Feminino , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Braço/fisiologia , Estudantes
5.
Front Psychol ; 13: 905772, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110286

RESUMO

This study investigated acute effects of real and imagined endurance exercise on sustained attention performance in healthy young adults in order to shed light on the action mechanisms underlying changes in cognitive functioning. The neural similarities between both imagined and physically performed movements reveal that imagery induces transient hypofrontality, whereas real exercise reflects both transient hypofrontality effects and the global release of signaling factors (e.g., BDNF or serotonin) due to muscle contraction and the accompanying sensory feedback. We hypothesized improved cognitive functioning after both interventions (imagery and physical endurance exercise) with greater improvements for real exercise because it targets both mechanisms. Fifty-three sport science students completed two 25-min sessions of moderate endurance exercise in either a motor imagery modality or an executed bodily activity within the framework of an order-balanced crossover study. Assessments for sustained attention performance (d2-R) were performed before and after each endurance exercise condition. Statistical results showed improvements for both groups over time, which can mostly be explained by retest effects. However, we observed a significant interaction effect between group and time, F(1.6, 81.9) = 3.64, p = 0.04, η 2 = 0.07, with higher increases in the first session in case physical endurance exercise was performed compared to motor imagery exercise, t(51) = -2.71, p = 0.09, d = 0.75. This might suggest that the release of signaling factors due to muscle contractions with sensory feedback processing is an additional mediating mechanism alongside motor-related transient hypofrontality that improves cognitive performance.

6.
Sensors (Basel) ; 22(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458995

RESUMO

Beach handball is a young discipline that is characterized by numerous high-intensity actions. By following up on previous work, the objective was to perform in-depth analyses evaluating external load (e.g., distance traveled, velocity, changes in direction, etc.) in beach handball players. In cross-sectional analyses, data of 69 players belonging to the German national or prospective team were analyzed during official tournaments using a local positioning system (10 Hz) and inertial measurement units (100 Hz). Statistical analyses comprised the comparison of the first and second set and the effects of age and sex (female adolescents vs. male adolescents vs. male adults) and playing position (goalkeepers, defenders, wings, specialists, and pivots) on external load measures. We found evidence for reduced external workload during the second set of the matches (p = 0.005, ηp2 = 0.09), as indicated by a significantly lower player load per minute and number of changes in direction. Age/sex (p < 0.001, ηp2 = 0.22) and playing position (p < 0.001, ηp2 = 0.29) also had significant effects on external load. The present data comprehensively describe and analyze important external load measures in a sample of high-performing beach handball players, providing valuable information to practitioners and coaches aiming at improving athletic performance in this new sport.


Assuntos
Desempenho Atlético , Utensílios Domésticos , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Estudos Prospectivos
7.
Int J Psychophysiol ; 174: 57-65, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35157924

RESUMO

Many studies have investigated the activation of cortical areas and corticospinal excitability during motor imagery (MI) in relation to motor execution. Similar activation of cortical areas during imagined and executed bodily movements and increased corticospinal excitability while imagining movements has been demonstrated. Despite these similarities on the central nervous system level, there is no overt movement during MI. This suggests that centrally generated signals must be inhibited at some level. Second, even in the absence of movement, some studies find behavioral effects of MI interventions. Most of the studies have investigated the role of MI on the cortical or spinal level, but less is known about the peripheral level, such as the muscle system. Testing muscular excitability during MI will give further hints whether and how low-threshold motor commands during MI reach the muscular system. Furthermore, the extent of the shown effects during imagery depends considerably on type of imagery, available proprioceptive information, and imagery ability. Therefore, this study investigates muscular excitability of the biceps brachii muscle manipulating imagery mode (MI vs. visual imagery) and proprioceptive information (with or without muscle effort). 40 participants were included in the analysis. The mechanical response of the muscle after a single electrical stimulus was assessed via tensiomyography. The corresponding variables maximal displacement, delay time, and contraction velocity were used to calculate 2 × 2 ANOVAs with repeated measurements. The absence of interaction effects shows that possible imagery effects on the muscle system are not increased by effort. MI altered time to contraction with lower delay time compared to control condition. Velocity and maximal displacement of the muscle belly during contraction did not differ between imagery conditions. This indicates that MI might impact on the initiation of muscle contraction but does not change the contraction itself. Thus, neuronal factors are moving further into focus in the context of MI research.


Assuntos
Potencial Evocado Motor , Imaginação , Eletromiografia , Potencial Evocado Motor/fisiologia , Humanos , Imaginação/fisiologia , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana
8.
J Hum Kinet ; 85: 115-126, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36643841

RESUMO

Cuts and changes of direction (COD) are frequent movements during games in team sports. Since those movements are seen as a key performance variable, COD assessments are included in performance diagnostics. However, some tests are criticized as they seem to be confounded by variables such as linear sprinting. Therefore, it is suggested that not only total COD time should be assessed, but also the athletes' COD movements should be examined more closely. For example, split times could be analyzed in tests with more than one COD like the Team-Sport-Specific COD (TSS-COD) test. We aimed to investigate the construct validity of the TSS-COD test, focusing on the homogeneity of the different test parts. We also tested how far sprint performance mapped onto COD performance. Test data were analyzed from 154 elite male and female volleyball and basketball athletes. A Fitlight© System was used to assess duration of the TSS-COD test. For the sprint tests, magnetic gates (Humotion GmbH) were used to measure sprint time. Explorative principal component analysis (PCA) was conducted including the test interval duration and the athletes' 5, 10, and 20 m sprint performance, to test the validity of the TSS-COD test. PCA results showed that the start interval formed a factor separate from the other COD sub-intervals. In addition, sprint performance was separated from all COD interval measures. The findings of the PCA were confirmed by split-half validation. Since sprint and COD performance represent independent performance domains within this analysis, we suggest the TSS-COD test to be a valid test to assess COD performance.

9.
Front Hum Neurosci ; 15: 756230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744667

RESUMO

Muscular fatigue can affect postural control processes by impacting on the neuromuscular and somatosensory system. It is assumed that this leads to an increased risk of injury, especially in sports such as alpine skiing that expose the body to strong and rapidly changing external forces. In this context, posture constraints and contraction-related muscular pressure may lead to muscular deoxygenation. This study investigates whether these constraints and pressure affect static and dynamic postural control. To simulate impaired blood flow in sports within a laboratory task, oxygen saturation was manipulated locally by using an inflatable cuff to induce blood flow restriction (BFR). Twenty-three subjects were asked to stand on a perturbatable platform used to assess postural-related movements. Using a 2 × 2 within-subject design, each participant performed postural control tasks both with and without BFR. BFR resulted in lower oxygenation of the m. quadriceps femoris (p = 0.024) and was associated with a significantly lower time to exhaustion (TTE) compared to the non-restricted condition [F (1,19) = 16.22, p < 0.001, η p 2 = 0.46]. Perturbation resulted in a significantly increased TTE [F (1,19) = 7.28, p = 0.014, η p 2 = 0.277]. There were no significant effects on static and dynamic postural control within the saturation conditions. The present data indicate that BFR conditions leads to deoxygenation and a reduced TTE. Postural control and the ability to regain stability after perturbation were not affected within this investigation.

10.
Front Physiol ; 12: 694411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366884

RESUMO

The aim of this systematic review was to assess the effects of genetic variations and polymorphisms on endurance performance, muscle strength and injury susceptibility in competitive sports. The electronic databases PubMed and Web of Science were searched for eligible studies. The study quality was assessed using the RoBANS tool. Studies were included if they met the following criteria: (1) human study in English or German; (2) published in the period 2015-2019; (3) investigation of an association between genetic variants and endurance performance and/or muscle strength and/or endurance/strength training status as well as ligament, tendon, or muscle injuries; (4) participants aged 18-60 years and national or international competition participation; (5) comparison with a control group. Nineteen studies and one replication study were identified. Results revealed that the IGF-1R 275124 A>C rs1464430 polymorphism was overrepresented in endurance trained athletes. Further, genotypes of PPARGC1A polymorphism correlated with performance in endurance exercise capacity tests in athletes. Moreover, the RR genotype of ACTN3 R577X polymorphism, the C allele of IGF-1R polymorphism and the gene variant FTO T>A rs9939609 and/or their AA genotype were linked to muscle strength. In addition, gene variants of MCT1 (T1470A rs1049434) and ACVR1B (rs2854464) were also positively associated with strength athletes. Among others, the gene variants of the MMP group (rs591058 and rs679620) as well as the polymorphism COL5A1 rs13946 were associated with susceptibility to injuries of competitive athletes. Based on the identified gene variants, individualized training programs for injury prevention and optimization of athletic performance could be created for competitive athletes using gene profiling techniques.

11.
PLoS One ; 16(7): e0253130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293800

RESUMO

Auditory and visual percepts are integrated even when they are not perfectly temporally aligned with each other, especially when the visual signal precedes the auditory signal. This window of temporal integration for asynchronous audiovisual stimuli is relatively well examined in the case of speech, while other natural action-induced sounds have been widely neglected. Here, we studied the detection of audiovisual asynchrony in three different whole-body actions with natural action-induced sounds-hurdling, tap dancing and drumming. In Study 1, we examined whether audiovisual asynchrony detection, assessed by a simultaneity judgment task, differs as a function of sound production intentionality. Based on previous findings, we expected that auditory and visual signals should be integrated over a wider temporal window for actions creating sounds intentionally (tap dancing), compared to actions creating sounds incidentally (hurdling). While percentages of perceived synchrony differed in the expected way, we identified two further factors, namely high event density and low rhythmicity, to induce higher synchrony ratings as well. Therefore, we systematically varied event density and rhythmicity in Study 2, this time using drumming stimuli to exert full control over these variables, and the same simultaneity judgment tasks. Results suggest that high event density leads to a bias to integrate rather than segregate auditory and visual signals, even at relatively large asynchronies. Rhythmicity had a similar, albeit weaker effect, when event density was low. Our findings demonstrate that shorter asynchronies and visual-first asynchronies lead to higher synchrony ratings of whole-body action, pointing to clear parallels with audiovisual integration in speech perception. Overconfidence in the naturally expected, that is, synchrony of sound and sight, was stronger for intentional (vs. incidental) sound production and for movements with high (vs. low) rhythmicity, presumably because both encourage predictive processes. In contrast, high event density appears to increase synchronicity judgments simply because it makes the detection of audiovisual asynchrony more difficult. More studies using real-life audiovisual stimuli with varying event densities and rhythmicities are needed to fully uncover the general mechanisms of audiovisual integration.


Assuntos
Percepção Auditiva , Dança/fisiologia , Música , Atletismo/fisiologia , Percepção Visual , Estimulação Acústica , Adulto , Dança/psicologia , Feminino , Humanos , Masculino , Música/psicologia , Estimulação Luminosa , Som , Atletismo/psicologia , Percepção Visual/fisiologia , Adulto Jovem
13.
Front Sports Act Living ; 2: 559277, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33345117

RESUMO

The float serve is an effective weapon to impede the attack of the opposing team. Because of its great importance in indoor and beach volleyball, we measured and quantified the float effect. We recorded 24 float serves of 12 top athletes in beach volleyball and indoor volleyball, respectively, and analyzed them using video analysis. We determined the 3D trajectories of the ball flight and developed two measures to describe the size of the float effect, the mean residuals and the anticipation error. Both were derived from regression models. These measures suggest that the float effect is greater in the vertical plane than in the horizontal plane, both for indoor and beach volleyball. Analyses of ball release velocities suggest that a certain ball release velocity is a necessary, but not sufficient, condition for ball floating. A validation of the float measurements with subjective expert ratings showed a correlation with the horizontal deviations. This study provides a new approach to analyze floating in on-court volleyball serves and broadens the knowledge for float effects in sports.

14.
Front Neurosci ; 14: 573970, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250704

RESUMO

The influence of delayed auditory feedback on action evaluation and execution of real-life action-induced sounds apart from language and music is still poorly understood. Here, we examined how a temporal delay impacted the behavioral evaluation and neural representation of hurdling and tap-dancing actions in a functional magnetic resonance imaging (fMRI) experiment, postulating that effects of delay diverge between the two, as we create action-induced sounds intentionally in tap dancing, but incidentally in hurdling. Based on previous findings, we expected that conditions differ regarding the engagement of the supplementary motor area (SMA), posterior superior temporal gyrus (pSTG), and primary auditory cortex (A1). Participants were videotaped during a 9-week training of hurdling and tap dancing; in the fMRI scanner, they were presented with point-light videos of their own training videos, including the original or the slightly delayed sound, and had to evaluate how well they performed on each single trial. For the undelayed conditions, we replicated A1 attenuation and enhanced pSTG and SMA engagement for tap dancing (intentionally generated sounds) vs. hurdling (incidentally generated sounds). Delayed auditory feedback did not negatively influence behavioral rating scores in general. Blood-oxygen-level-dependent (BOLD) response transiently increased and then adapted to repeated presentation of point-light videos with delayed sound in pSTG. This region also showed a significantly stronger correlation with the SMA under delayed feedback. Notably, SMA activation increased more for delayed feedback in the tap-dancing condition, covarying with higher rating scores. Findings suggest that action evaluation is more strongly based on top-down predictions from SMA when sounds of intentional action are distorted.

15.
Sci Rep ; 10(1): 19176, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154478

RESUMO

Motor imagery is conceptualized as an internal simulation that uses motor-related parts of the brain as its substrate. Many studies have investigated this sharing of common neural resources between the two modalities of motor imagery and motor execution. They have shown overlapping but not identical activation patterns that thereby result in a modality-specific neural signature. However, it is not clear how far this neural signature depends on whether the imagined action has previously been practiced physically or only imagined. The present study aims to disentangle whether the neural imprint of an imagined manual pointing sequence within cortical and subcortical motor areas is determined by the nature of this prior practice modality. Each participant practiced two sequences physically, practiced two other sequences mentally, and did a behavioural pre-test without any further practice on a third pair of sequences. After a two-week practice intervention, participants underwent fMRI scans while imagining all six sequences. Behavioural data demonstrated practice-related effects as well as very good compliance with instructions. Functional MRI data confirmed the previously known motor imagery network. Crucially, we found that mental and physical practice left a modality-specific footprint during mental motor imagery. In particular, activation within the right posterior cerebellum was stronger when the imagined sequence had previously been practiced physically. We conclude that cerebellar activity is shaped specifically by the nature of the prior practice modality.


Assuntos
Cerebelo/diagnóstico por imagem , Imaginação/fisiologia , Córtex Motor/diagnóstico por imagem , Prática Psicológica , Desempenho Psicomotor/fisiologia , Adulto , Mapeamento Encefálico , Cerebelo/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/fisiologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Adulto Jovem
17.
18.
Front Neurosci ; 14: 483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477059

RESUMO

Most human actions produce concomitant sounds. Action sounds can be either part of the action goal (GAS, goal-related action sounds), as for instance in tap dancing, or a mere by-product of the action (BAS, by-product action sounds), as for instance in hurdling. It is currently unclear whether these two types of action sounds-incidental or intentional-differ in their neural representation and whether the impact on the performance evaluation of an action diverges between the two. We here examined whether during the observation of tap dancing compared to hurdling, auditory information is a more important factor for positive action quality ratings. Moreover, we tested whether observation of tap dancing vs. hurdling led to stronger attenuation in primary auditory cortex, and a stronger mismatch signal when sounds do not match our expectations. We recorded individual point-light videos of newly trained participants performing tap dancing and hurdling. In the subsequent functional magnetic resonance imaging (fMRI) session, participants were presented with the videos that displayed their own actions, including corresponding action sounds, and were asked to rate the quality of their performance. Videos were either in their original form or scrambled regarding the visual modality, the auditory modality, or both. As hypothesized, behavioral results showed significantly lower rating scores in the GAS condition compared to the BAS condition when the auditory modality was scrambled. Functional MRI contrasts between BAS and GAS actions revealed higher activation of primary auditory cortex in the BAS condition, speaking in favor of stronger attenuation in GAS, as well as stronger activation of posterior superior temporal gyri and the supplementary motor area in GAS. Results suggest that the processing of self-generated action sounds depends on whether we have the intention to produce a sound with our action or not, and action sounds may be more prone to be used as sensory feedback when they are part of the explicit action goal. Our findings contribute to a better understanding of the function of action sounds for learning and controlling sound-producing actions.

19.
Front Psychol ; 11: 125, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153451

RESUMO

The role of attentional focusing in motor tasks has been highlighted frequently. The "internal-external" dimension has emerged, but also the spatial distance between body and attended location. In two experiments, an extended attentional focus paradigm was introduced to investigate distality effects of attentional foci on balance performance. First, the distality of the coordinates of the point of focus was varied between a proximal and distal position on an artificial tool attached to the body. Second, the distance of the displayed effect on the wall was varied between a 2.5 and 5 m condition. Subjects were instructed to focus on controlling either a proximal or distal spot on a tool attached to their head, represented by two laser pointers. Subsequently, they needed to visually track their own body-movement effect of one of the laser pointers at a wall while completing various single leg stance tasks. Center of pressure (COP) sway was analyzed using a linear method (classic sway variables) as well as a non-linear method (multiscale entropy). In addition, laser trajectories were videotaped and served as additional performance outcome measure. Experiment 1 revealed differences in balance performance under proximal compared to distal attentional focus conditions. Moreover, experiment 2 yielded differences in balance-related sway measures and laser data between the 2.5 and 5 m condition of the visually observable movement effect. In conclusion, varying the distality of the point of focus between proximal and distal impacted balance performance. However, this effect was not consistent across all balance tasks. Relevantly, the distality of the movement effect shows a significant effect on balance plus laser performance with advantages in more distal conditions. This research emphasizes the importance of the spatial distality of movement effects for human behavior.

20.
Front Psychol ; 10: 1599, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396123

RESUMO

Background: The nature of perceptual-cognitive expertise in interactive sports has gained more and more scientific interest over the last two decades. Research to understand how this expertise can be developed has not been addressed profoundly yet. In approaches to study this with interventional designs, only few studies have scrutinized several levels of transfer such as to the field. Therefore, the aim of this study was to examine the efficacy of a generic off-court perceptual-cognitive training in elite volleyball players on three different levels: task-specific, near-transfer, and far-transfer effects. Based on overlapping cognitive processes between training and testing, we hypothesized task-specific improvements as well as positive near- and far-transfer effects after a multiple-object tracking training intervention. Methods: Twenty-two volleyball experts completed a 8-week three-dimensional (3D) multiple-object tracking (3D-MOT) training intervention. A control group (n = 21; volleyball experts also) participated in regular ball practice only. Before and after training, both groups performed tests on the 3D-MOT, four near-transfer tests in cognitive domains, and a far-transfer, lab-based, and volleyball-specific blocking test. Results: The results of the 2 × 2 analysis of variance (ANOVA) (group, time) showed significant interaction effects in the 3D-MOT task [F(1,40) = 93.10; p < 0.001; η p 2 = 0.70] and in two near-transfer tests [sustained attention: F(1,40) = 15.45; p < 0.001; η p 2 = 0.28; processing speed: F(1,40) = 12.15; p = 0.001; η p 2 = 0.23]. No significant interaction effects were found in the far-transfer volleyball test. Conclusions: Our study suggests positive effects in task-specific and two near-transfer tests of a perceptual-cognitive intervention in elite volleyball athletes. This supports a partial overlap in cognitive processing between practice and tests with the result of positive near-transfer. However, there are no significant effects in far-transfer testing. Although these current results are promising, it is still unclear how far-transfer effects of a generic perceptual-cognitive training intervention can be assured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...