Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 12(1): 4808, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376683

RESUMO

Myocardial regeneration is restricted to early postnatal life, when mammalian cardiomyocytes still retain the ability to proliferate. The molecular cues that induce cell cycle arrest of neonatal cardiomyocytes towards terminally differentiated adult heart muscle cells remain obscure. Here we report that the miR-106b~25 cluster is higher expressed in the early postnatal myocardium and decreases in expression towards adulthood, especially under conditions of overload, and orchestrates the transition of cardiomyocyte hyperplasia towards cell cycle arrest and hypertrophy by virtue of its targetome. In line, gene delivery of miR-106b~25 to the mouse heart provokes cardiomyocyte proliferation by targeting a network of negative cell cycle regulators including E2f5, Cdkn1c, Ccne1 and Wee1. Conversely, gene-targeted miR-106b~25 null mice display spontaneous hypertrophic remodeling and exaggerated remodeling to overload by derepression of the prohypertrophic transcription factors Hand2 and Mef2d. Taking advantage of the regulatory function of miR-106b~25 on cardiomyocyte hyperplasia and hypertrophy, viral gene delivery of miR-106b~25 provokes nearly complete regeneration of the adult myocardium after ischemic injury. Our data demonstrate that exploitation of conserved molecular programs can enhance the regenerative capacity of the injured heart.


Assuntos
MicroRNAs/genética , Infarto do Miocárdio/genética , Miócitos Cardíacos/metabolismo , Regeneração/genética , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Células Cultivadas , Ecocardiografia , Regulação da Expressão Gênica , Humanos , Hiperplasia/genética , Camundongos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Hum Gene Ther ; 25(9): 844-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25072305

RESUMO

Null mutations in the UGT1A1 gene result in Crigler-Najjar syndrome type I (CNSI), characterized by severe hyperbilirubinemia and constant risk of developing neurological damage. Phototherapy treatment lowers plasma bilirubin levels, but its efficacy is limited and liver transplantation is required. To find alternative therapies, we applied AAV liver-specific gene therapy to a lethal mouse model of CNSI. We demonstrated that a single neonatal hUGT1A1 gene transfer was successful and the therapeutic effect lasted up to 17 months postinjection. The therapeutic effect was mediated by the presence of transcriptionally active double-stranded episomes. We also compared the efficacy of two different gene therapy approaches: liver versus skeletal muscle transgene expression. We observed that 5-8% of normal liver expression and activity levels were sufficient to significantly reduce bilirubin levels and maintain lifelong low plasma bilirubin concentration (3.1±1.5 mg/dl). In contrast, skeletal muscle was not able to efficiently lower bilirubin (6.4±2.0 mg/dl), despite 20-30% of hUgt1a1 expression levels, compared with normal liver. We propose that this remarkable difference in gene therapy efficacy could be related to the absence of the Mrp2 and Mrp3 transporters of conjugated bilirubin in muscle. Taken together, our data support the concept that liver is the best organ for efficient and long-term CNSI gene therapy, and suggest that the use of extra-hepatic tissues should be coupled to the presence of bilirubin transporters.


Assuntos
Síndrome de Crigler-Najjar/terapia , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/genética , Glucuronosiltransferase/genética , Fígado/metabolismo , Animais , Animais Recém-Nascidos , Bilirrubina/sangue , Southern Blotting , Western Blotting , Síndrome de Crigler-Najjar/genética , Camundongos , Músculo Esquelético/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teste de Desempenho do Rota-Rod , Albumina Sérica/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...