Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 622(7982): 393-401, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821590

RESUMO

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Assuntos
Rejeição de Enxerto , Transplante de Rim , Macaca fascicularis , Suínos , Transplante Heterólogo , Animais , Humanos , Animais Geneticamente Modificados , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Transplante de Rim/métodos , Polissacarídeos/deficiência , Suínos/genética , Transplante Heterólogo/métodos , Transgenes/genética
2.
G3 (Bethesda) ; 12(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36331351

RESUMO

Regulation of RNA polymerase II transcription requires the concerted efforts of several multisubunit coactivator complexes, which interact with the RNA polymerase II preinitiation complex to stimulate transcription. We previously showed that separation of the Mediator core from Mediator's tail module results in modest overactivation of genes annotated as highly dependent on TFIID for expression. However, it is unclear if other coactivators are involved in this phenomenon. Here, we show that the overactivation of certain genes by Mediator core/tail separation is blunted by disruption of the Spt-Ada-Gcn5-Acetyl transferase complex through the removal of its structural Spt20 subunit, though this downregulation does not appear to completely depend on reduced Spt-Ada-Gcn5-Acetyl transferase association with the genome. Consistent with the enrichment of TFIID-dependent genes among genes overactivated by Mediator core/tail separation, depletion of the essential TFIID subunit Taf13 suppressed the overactivation of these genes when Med16 was simultaneously removed. As with Spt-Ada-Gcn5-Acetyl transferase, this effect did not appear to be fully dependent on the reduced genomic association of TFIID. Given that the observed changes in gene expression could not be clearly linked to alterations in Spt-Ada-Gcn5-Acetyl transferase or TFIID occupancy, our data may suggest that the Mediator core/tail connection is important for the modulation of Spt-Ada-Gcn5-Acetyl transferase and/or TFIID conformation and/or function at target genes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transativadores/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Transcrição Gênica
3.
Bioinform Adv ; 2(1): vbac033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722206

RESUMO

Motivation: Methods for the global measurement of transcript abundance such as microarrays and RNA-Seq generate datasets in which the number of measured features far exceeds the number of observations. Extracting biologically meaningful and experimentally tractable insights from such data therefore requires high-dimensional prediction. Existing sparse linear approaches to this challenge have been stunningly successful, but some important issues remain. These methods can fail to select the correct features, predict poorly relative to non-sparse alternatives or ignore any unknown grouping structures for the features. Results: We propose a method called SuffPCR that yields improved predictions in high-dimensional tasks including regression and classification, especially in the typical context of omics with correlated features. SuffPCR first estimates sparse principal components and then estimates a linear model on the recovered subspace. Because the estimated subspace is sparse in the features, the resulting predictions will depend on only a small subset of genes. SuffPCR works well on a variety of simulated and experimental transcriptomic data, performing nearly optimally when the model assumptions are satisfied. We also demonstrate near-optimal theoretical guarantees. Availability and implementation: Code and raw data are freely available at https://github.com/dajmcdon/suffpcr. Package documentation may be viewed at https://dajmcdon.github.io/suffpcr. Contact: daniel@stat.ubc.ca. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

4.
Methods Mol Biol ; 2477: 21-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35524109

RESUMO

Transcription start site (TSS) usage is a critical factor in the regulation of gene expression. A number of methods for global TSS mapping have been developed, but barriers of expense, technical difficulty, time, and/or cost have limited their broader adoption. To address these issues, we developed Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq). Requiring only three enzymatic steps with intervening bead cleanups, a STRIPE-seq library can be prepared from as little as 50 ng total RNA in ~5 h at a cost of ~$12 (US). In addition to profiling TSS usage, STRIPE-seq provides information on transcript levels that can be used for differential expression analysis. Thanks to its simplicity and low cost, we envision that STRIPE-seq could be employed by any molecular biology laboratory interested in profiling transcription initiation.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição
5.
Insect Mol Biol ; 31(5): 543-550, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35429082

RESUMO

CRISPR/Cas9 genome editing has now expanded to many insect species, including Tribolium castaneum. However, compared to Drosophila melanogaster, the CRISPR toolkit of T. castaneum is limited. A particularly apparent gap is the lack of Cas9 transgenic animals, which generally offer higher editing efficiency. We address this by creating and testing transgenic beetles expressing Cas9. We generated two different constructs bearing basal heat shock promoter-driven Cas9, two distinct 3' UTRs, and one containing Cas9 fused to EGFP by a T2A peptide. Analyses of Cas9 activity in each transgenic line demonstrated that both designs are capable of inducing CRISPR- mediated changes in the genome in the absence of heat induction. Overall, these resources enhance the accessibility of CRISPR/Cas9 genome editing for the Tribolium research community and provide a benchmark against which to compare future transgenic Cas9 lines.


Assuntos
Tribolium , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Edição de Genes , Tribolium/genética
6.
Mol Cell ; 81(22): 4574-4576, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34798043

RESUMO

Gopalan et al. (2021) present multi-CUT&Tag, a modification of cleavage under targets and tagmentation (CUT&Tag) that enables simultaneous genome-wide mapping of multiple chromatin-associated targets in a single sample.


Assuntos
Cromatina , Cromatina/genética , Imunoprecipitação da Cromatina , Mapeamento Cromossômico
7.
Cell Rep Methods ; 1(5)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34632443

RESUMO

Transcription start site (TSS) selection influences transcript stability and translation as well as protein sequence. Alternative TSS usage is pervasive in organismal development, is a major contributor to transcript isoform diversity in humans, and is frequently observed in human diseases including cancer. In this review, we discuss the breadth of techniques that have been used to globally profile TSSs and the resulting insights into gene regulation, as well as future prospects in this area of inquiry.


Assuntos
Regulação da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética
8.
Methods Mol Biol ; 2351: 289-303, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34382196

RESUMO

Interactions between regulatory proteins and specific genomic regions are critical for all chromatin-based processes, including transcription, DNA replication, and DNA repair. Genome-wide mapping of such interactions is most commonly performed with chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq), but a number of orthogonal methods employing targeted enzymatic activity have also been introduced. We previously described a genome-wide implementation of chromatin endogenous cleavage (ChEC-Seq), wherein a protein of interest is fused to micrococcal nuclease (MNase) to enable targeted, calcium-dependent genomic cleavage. Here, we describe the ChEC-Seq protocol for use in budding yeast though it can be used in other organisms in conjunction with appropriate methods for introduction of an MNase fusion protein.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/métodos , Cromatina/genética , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Estudo de Associação Genômica Ampla , Estudo de Associação Genômica Ampla/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
9.
PLoS Genet ; 17(8): e1009529, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383744

RESUMO

The Mediator coactivator complex is divided into four modules: head, middle, tail, and kinase. Deletion of the architectural subunit Med16 separates core Mediator (cMed), comprising the head, middle, and scaffold (Med14), from the tail. However, the direct global effects of tail/cMed disconnection are unclear. We find that rapid depletion of Med16 downregulates genes that require the SAGA complex for full expression, consistent with their reported tail dependence, but also moderately overactivates TFIID-dependent genes in a manner partly dependent on the separated tail, which remains associated with upstream activating sequences. Suppression of TBP dynamics via removal of the Mot1 ATPase partially restores normal transcriptional activity to Med16-depleted cells, suggesting that cMed/tail separation results in an imbalance in the levels of PIC formation at SAGA-requiring and TFIID-dependent genes. We propose that the preferential regulation of SAGA-requiring genes by tailed Mediator helps maintain a proper balance of transcription between these genes and those more dependent on TFIID.


Assuntos
Adenosina Trifosfatases/genética , Perfilação da Expressão Gênica/métodos , Complexo Mediador/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Proteína de Ligação a TATA-Box/metabolismo , Regulação Fúngica da Expressão Gênica , Mutação , Regiões Promotoras Genéticas , Análise de Sequência de RNA , Transativadores , Transcrição Gênica
10.
NAR Genom Bioinform ; 3(2): lqab051, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34250478

RESUMO

Heterogeneity in transcription initiation has important consequences for transcript stability and translation, and shifts in transcription start site (TSS) usage are prevalent in various developmental, metabolic, and disease contexts. Accordingly, numerous methods for global TSS profiling have been developed, including most recently Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a method to profile transcription start sites (TSSs) on a genome-wide scale with significant cost and time savings compared to previous methods. In anticipation of more widespread adoption of STRIPE-seq and related methods for construction of promoter atlases and studies of differential gene expression, we built TSRexploreR, an R package for end-to-end analysis of TSS mapping data. TSRexploreR provides functions for TSS and transcription start region (TSR) detection, normalization, correlation, visualization, and differential TSS/TSR analyses. TSRexploreR is highly interoperable, accepting the data structures of TSS and TSR sets generated by several existing tools for processing and alignment of TSS mapping data, such as CAGEr for Cap Analysis of Gene Expression (CAGE) data. Lastly, TSRexploreR implements a novel approach for the detection of shifts in TSS distribution.

11.
Cancer Res ; 81(14): 3791-3805, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34035083

RESUMO

Despite the connection of secretory cells, including goblet and enteroendocrine (EEC) cells, to distinct mucus-containing colorectal cancer histologic subtypes, their role in colorectal cancer progression has been underexplored. Here, our analysis of The Cancer Genome Atlas (TCGA) and single-cell RNA-sequencing data demonstrates that EEC progenitor cells are enriched in BRAF-mutant colorectal cancer patient tumors, cell lines, and patient-derived organoids. In BRAF-mutant colorectal cancer, EEC progenitors were blocked from differentiating further by DNA methylation and silencing of NEUROD1, a key gene required for differentiation of intermediate EECs. Mechanistically, secretory cells and the factors they secrete, such as trefoil factor 3, promoted colony formation and activation of cell survival pathways in the entire cell population. Lysine-specific demethylase 1 (LSD1) was identified as a critical regulator of secretory cell specification in vitro and in a colon orthotopic xenograft model, where LSD1 loss blocks formation of EEC progenitors and reduces tumor growth and metastasis. These findings reveal an important role for EEC progenitors in supporting colorectal cancer. SIGNIFICANCE: This study establishes enteroendocrine progenitors as a targetable population that promotes BRAF-mutant colorectal cancer and can be blocked by LSD1 inhibition to suppress tumor growth.


Assuntos
Neoplasias Colorretais/genética , Metilação de DNA , Células Enteroendócrinas/metabolismo , Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Células Enteroendócrinas/patologia , Células HT29 , Xenoenxertos , Histona Desmetilases/deficiência , Histona Desmetilases/genética , Humanos , Camundongos , Proteínas Proto-Oncogênicas B-raf/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia
12.
iScience ; 24(4): 102372, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33948557

RESUMO

Using in vivo muscle stem cell (satellite cell)-specific extracellular vesicle (EV) tracking, satellite cell depletion, in vitro cell culture, and single-cell RNA sequencing, we show satellite cells communicate with other cells in skeletal muscle during mechanical overload. Early satellite cell EV communication primes the muscle milieu for proper long-term extracellular matrix (ECM) deposition and is sufficient to support sustained hypertrophy in adult mice, even in the absence of fusion to muscle fibers. Satellite cells modulate chemokine gene expression across cell types within the first few days of loading, and EV delivery of miR-206 to fibrogenic cells represses Wisp1 expression required for appropriate ECM remodeling. Late-stage communication from myogenic cells during loading is widespread but may be targeted toward endothelial cells. Satellite cells coordinate adaptation by influencing the phenotype of recipient cells, which extends our understanding of their role in muscle adaptation beyond regeneration and myonuclear donation.

13.
J Physiol ; 599(13): 3363-3384, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33913170

RESUMO

KEY POINTS: Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery. A PCR-based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE. Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non-canonical MYC-associated regions, but not the promoter. Myonuclear-specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans. A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. ABSTRACT: Ribosomes are the macromolecular engines of protein synthesis. Skeletal muscle ribosome biogenesis is stimulated by exercise, although the contribution of ribosomal DNA (rDNA) copy number and methylation to exercise-induced rDNA transcription is unclear. To investigate the genetic and epigenetic regulation of ribosome biogenesis with exercise, a time course of skeletal muscle biopsies was obtained from 30 participants (18 men and 12 women; 31 ± 8 years, 25 ± 4 kg m-2 ) at rest and 30 min, 3 h, 8 h and 24 h after acute endurance (n = 10, 45 min cycling, 70% V̇O2max ) or resistance exercise (n = 10, 4 × 7 × 2 exercises); 10 control participants underwent biopsies without exercise. rDNA transcription and dosage were assessed using quantitative PCR and whole genome sequencing. rDNA promoter methylation was investigated using massARRAY EpiTYPER and global rDNA CpG methylation was assessed using reduced-representation bisulphite sequencing. Ribosome biogenesis and MYC transcription were associated primarily with resistance but not endurance exercise, indicating preferential up-regulation during hypertrophic processes. With resistance exercise, ribosome biogenesis was associated with rDNA gene dosage, as well as epigenetic changes in enhancer and non-canonical MYC-associated areas in rDNA, but not the promoter. A mouse model of in vivo metabolic RNA labelling and genetic myonuclear fluorescence labelling validated the effects of an acute hypertrophic stimulus on ribosome biogenesis and Myc transcription, and also corroborated rDNA enhancer and Myc-associated methylation alterations specifically in myonuclei. The present study provides the first information on skeletal muscle genetic and rDNA gene-wide epigenetic regulation of ribosome biogenesis in response to exercise, revealing novel roles for rDNA dosage and CpG methylation.


Assuntos
Epigênese Genética , Ribossomos , Animais , Humanos , Hipertrofia/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo
14.
Genetics ; 217(3)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789343

RESUMO

Mediator is a modular coactivator complex involved in the transcription of the majority of RNA polymerase II-regulated genes. However, the degrees to which individual core subunits of Mediator contribute to its activity have been unclear. Here, we investigate the contribution of two essential architectural subunits of Mediator to transcription in Saccharomyces cerevisiae. We show that acute depletion of the main complex scaffold Med14 or the head module nucleator Med17 is lethal and results in global transcriptional downregulation, though Med17 removal has a markedly greater negative effect. Consistent with this, Med17 depletion impairs preinitiation complex (PIC) assembly to a greater extent than Med14 removal. Co-depletion of Med14 and Med17 reduced transcription and TFIIB promoter occupancy similarly to Med17 ablation alone, indicating that the contributions of Med14 and Med17 to Mediator function are not additive. We propose that, while the structural integrity of complete Mediator and the head module are both important for PIC assembly and transcription, the head module plays a greater role in this process and is thus the key functional module of Mediator in this regard.


Assuntos
Complexo Mediador/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Iniciação da Transcrição Genética , Complexo Mediador/genética , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Transcriptoma
15.
Genome Res ; 30(6): 910-923, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32660958

RESUMO

Accurate mapping of transcription start sites (TSSs) is key for understanding transcriptional regulation. However, current protocols for genome-wide TSS profiling are laborious and/or expensive. We present Survey of TRanscription Initiation at Promoter Elements with high-throughput sequencing (STRIPE-seq), a simple, rapid, and cost-effective protocol for sequencing capped RNA 5' ends from as little as 50 ng total RNA. Including depletion of uncapped RNA and reaction cleanups, a STRIPE-seq library can be constructed in about 5 h. We show application of STRIPE-seq to TSS profiling in yeast and human cells and show that it can also be effectively used for quantification of transcript levels and analysis of differential gene expression. In conjunction with our ready-to-use computational workflows, STRIPE-seq is a straightforward, efficient means by which to probe the landscape of transcriptional initiation.


Assuntos
Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Iniciação da Transcrição Genética , Transcriptoma , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Regiões Promotoras Genéticas , Análise de Sequência de RNA/métodos , Sítio de Iniciação de Transcrição , Leveduras/genética
16.
Proc Natl Acad Sci U S A ; 117(4): 2020-2031, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31937660

RESUMO

The DNA-binding protein CCCTC-binding factor (CTCF) and the cohesin complex function together to shape chromatin architecture in mammalian cells, but the molecular details of this process remain unclear. Here, we demonstrate that a 79-aa region within the CTCF N terminus is essential for cohesin positioning at CTCF binding sites and chromatin loop formation. However, the N terminus of CTCF fused to artificial zinc fingers was not sufficient to redirect cohesin to non-CTCF binding sites, indicating a lack of an autonomously functioning domain in CTCF responsible for cohesin positioning. BORIS (CTCFL), a germline-specific paralog of CTCF, was unable to anchor cohesin to CTCF DNA binding sites. Furthermore, CTCF-BORIS chimeric constructs provided evidence that, besides the N terminus of CTCF, the first two CTCF zinc fingers, and likely the 3D geometry of CTCF-DNA complexes, are also involved in cohesin retention. Based on this knowledge, we were able to convert BORIS into CTCF with respect to cohesin positioning, thus providing additional molecular details of the ability of CTCF to retain cohesin. Taken together, our data provide insight into the process by which DNA-bound CTCF constrains cohesin movement to shape spatiotemporal genome organization.


Assuntos
Neoplasias da Mama/metabolismo , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA de Neoplasias/metabolismo , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Genoma Humano , Humanos , Ligação Proteica , Domínios Proteicos , Células Tumorais Cultivadas , Coesinas
17.
Mol Cancer Res ; 18(2): 264-277, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31704733

RESUMO

Activation of the epithelial-to-mesenchymal transition (EMT) program is a critical mechanism for initiating cancer progression and migration. Colorectal cancers contain many genetic and epigenetic alterations that can contribute to EMT. Mutations activating the PI3K/AKT signaling pathway are observed in >40% of patients with colorectal cancer contributing to increased invasion and metastasis. Little is known about how oncogenic signaling pathways such as PI3K/AKT synergize with chromatin modifiers to activate the EMT program. Lysine-specific demethylase 1 (LSD1) is a chromatin-modifying enzyme that is overexpressed in colorectal cancer and enhances cell migration. In this study, we determine that LSD1 expression is significantly elevated in patients with colorectal cancer with mutation of the catalytic subunit of PI3K, PIK3CA, compared with patients with colorectal cancer with WT PIK3CA. LSD1 enhances activation of the AKT kinase in colorectal cancer cells through a noncatalytic mechanism, acting as a scaffolding protein for the transcription-repressing CoREST complex. In addition, growth of PIK3CA-mutant colorectal cancer cells is uniquely dependent on LSD1. Knockdown or CRISPR knockout of LSD1 blocks AKT-mediated stabilization of the EMT-promoting transcription factor Snail and effectively blocks AKT-mediated EMT and migration. Overall, we uniquely demonstrate that LSD1 mediates AKT activation in response to growth factors and oxidative stress, and LSD1-regulated AKT activity promotes EMT-like characteristics in a subset of PIK3CA-mutant cells. IMPLICATIONS: Our data support the hypothesis that inhibitors targeting the CoREST complex may be clinically effective in patients with colorectal cancer harboring PIK3CA mutations.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Técnicas de Inativação de Genes , Células HCT116 , Células HT29 , Histona Desmetilases/genética , Humanos , Mutação , Fosforilação , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Transfecção
18.
Mol Cancer Res ; 17(10): 2051-2062, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292201

RESUMO

High-grade serous carcinoma (HGSC) is the most aggressive and predominant form of epithelial ovarian cancer and the leading cause of gynecologic cancer-related death. We have previously shown that CTCFL (also known as BORIS, Brother of the Regulator of Imprinted Sites) is expressed in most ovarian cancers, and is associated with global and promoter-specific DNA hypomethylation, advanced tumor stage, and poor prognosis. To explore its role in HGSC, we expressed BORIS in human fallopian tube secretory epithelial cells (FTSEC), the presumptive cells of origin for HGSC. BORIS-expressing cells exhibited increased motility and invasion, and BORIS expression was associated with alterations in several cancer-associated gene expression networks, including fatty acid metabolism, TNF signaling, cell migration, and ECM-receptor interactions. Importantly, GALNT14, a glycosyltransferase gene implicated in cancer cell migration and invasion, was highly induced by BORIS, and GALNT14 knockdown significantly abrogated BORIS-induced cell motility and invasion. In addition, in silico analyses provided evidence for BORIS and GALNT14 coexpression in several cancers. Finally, ChIP-seq demonstrated that expression of BORIS was associated with de novo and enhanced binding of CTCF at hundreds of loci, many of which correlated with activation of transcription at target genes, including GALNT14. Taken together, our data indicate that BORIS may promote cell motility and invasion in HGSC via upregulation of GALNT14, and suggests BORIS as a potential therapeutic target in this malignancy. IMPLICATIONS: These studies provide evidence that aberrant expression of BORIS may play a role in the progression to HGSC by enhancing the migratory and invasive properties of FTSEC.


Assuntos
Fator de Ligação a CCCTC/genética , Proteínas de Ligação a DNA/genética , N-Acetilgalactosaminiltransferases/genética , Neoplasias Ovarianas/genética , Fator de Ligação a CCCTC/metabolismo , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/metabolismo , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Feminino , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , Invasividade Neoplásica , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Regiões Promotoras Genéticas , Transfecção
19.
PLoS Genet ; 15(7): e1008253, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31291240

RESUMO

Endoreplication is a cell cycle variant that entails cell growth and periodic genome duplication without cell division, and results in large, polyploid cells. Cells switch from mitotic cycles to endoreplication cycles during development, and also in response to conditional stimuli during wound healing, regeneration, aging, and cancer. In this study, we use integrated approaches in Drosophila to determine how mitotic cycles are remodeled into endoreplication cycles, and how similar this remodeling is between induced and developmental endoreplicating cells (iECs and devECs). Our evidence suggests that Cyclin A / CDK directly activates the Myb-MuvB (MMB) complex to induce transcription of a battery of genes required for mitosis, and that repression of CDK activity dampens this MMB mitotic transcriptome to promote endoreplication in both iECs and devECs. iECs and devECs differed, however, in that devECs had reduced expression of E2F1-dependent genes that function in S phase, whereas repression of the MMB transcriptome in iECs was sufficient to induce endoreplication without a reduction in S phase gene expression. Among the MMB regulated genes, knockdown of AurB protein and other subunits of the chromosomal passenger complex (CPC) induced endoreplication, as did knockdown of CPC-regulated cytokinetic, but not kinetochore, proteins. Together, our results indicate that the status of a CycA-Myb-MuvB-AurB network determines the decision to commit to mitosis or switch to endoreplication in both iECs and devECs, and suggest that regulation of different steps of this network may explain the known diversity of polyploid cycle types in development and disease.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Endorreduplicação , Animais , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina A/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Perfilação da Expressão Gênica , Mitose , Poliploidia , Proteínas Proto-Oncogênicas c-myb/metabolismo
20.
Mol Cell Biol ; 38(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30275344

RESUMO

Eukaryotic RNA polymerase II (RNAPII) transcribes mRNA genes and non-protein-coding RNA (ncRNA) genes, including those encoding small nuclear and nucleolar RNAs (sn/snoRNAs). In metazoans, RNAPII transcription of sn/snoRNAs is facilitated by a number of specialized complexes, but no such complexes have been discovered in yeast. It has been proposed that yeast sn/snoRNA and mRNA expression relies on a set of common factors, but the extent to which regulators of mRNA genes function at yeast sn/snoRNA genes is unclear. Here, we investigated a potential role for the Mediator complex, essential for mRNA gene transcription, in sn/snoRNA gene transcription. We found that Mediator maps to sn/snoRNA gene regulatory regions and that rapid depletion of the essential structural subunit Med14 strongly reduces RNAPII and TFIIB occupancy as well as nascent transcription of sn/snoRNA genes. Deletion of Med3 and Med15, subunits of the activator-interacting Mediator tail module, does not affect Mediator recruitment to or RNAPII and TFIIB occupancy of sn/snoRNA genes. Our analyses suggest that Mediator promotes PIC formation and transcription at sn/snoRNA genes, expanding the role of this critical regulator beyond its known functions in mRNA gene transcription and demonstrating further mechanistic similarity between the transcription of mRNA and sn/snoRNA genes.


Assuntos
Nucléolo Celular/genética , RNA Nuclear Pequeno/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica/genética , Proteínas Nucleares/genética , RNA Polimerase II/genética , RNA Mensageiro/genética , RNA Nucleolar Pequeno/genética , RNA não Traduzido/genética , Sequências Reguladoras de Ácido Nucleico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...