Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Dis Aquat Organ ; 155: 125-140, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37706643

RESUMO

Improving our understanding of the effects of satellite tags on large whales is a critical step in ongoing tag development to minimise potential health effects whilst addressing important research questions that enhance conservation management policy. In 2014, satellite tags were deployed on 9 female southern right whales Eubalaena australis accompanied by a calf off Australia. Photo-identification resights (n = 48) of 4 photo-identified individuals were recorded 1 to 2894 d (1-8 yr) post-tagging. Short-term (<22 d) effects observed included localised and regional swelling, depression at the tag site, blubber extrusion, skin loss and pigmentation colour change. Broad swelling observable from lateral but not aerial imagery (~1.2 m diameter or ~9% of body length) and depression at the tag site persisted up to 1446 d post-tagging for 1 individual, indicating a persistent foreign-body response or infection. Two tagged individuals returned 4 yr post-tagging in 2018 with a calf, and the medium-term effects were evaluated by comparing body condition of tagged whales with non-tagged whales. These females calved in a typical 4 yr interval, suggesting no apparent immediate impact of tagging on reproduction for these individuals, but longer-term monitoring is needed. There was no observable difference in the body condition between the 2 tagged and non-tagged females. Ongoing monitoring post-tagging is required to build on the sample size and statistical power. We demonstrate the value of long-term monitoring programmes and a collaborative approach for evaluating effects from satellite-tagging cetaceans to support species management.


Assuntos
Tecido Adiposo , Baleias , Feminino , Animais , Austrália , Pigmentação , Reprodução
2.
Proc Natl Acad Sci U S A ; 120(10): e2214035120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848574

RESUMO

Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (>60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (>60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.


Assuntos
Mudança Climática , Ecossistema , Animais , Regiões Antárticas , Efeitos Antropogênicos , Oceano Índico
3.
Sci Rep ; 12(1): 10639, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739207

RESUMO

The Humboldt Current Ecosystem (HCE) is one of the most productive marine ecosystems, sustaining one of the largest fishing industries in the world. Although several species of cetaceans are known to inhabit these productive waters, quantitative assessments of their abundance and distribution patterns are scarce and patchy. Here, we present the first abundance and distribution estimates for fin whale (Balaenoptera physalus), southeast Pacific blue whales (Balaenoptera musculus), sperm whale (Physeter macrocephalus), dusky dolphin (Lagenorhynchus obscurus), and common dolphin (Delphinus spp.) in the entire Chilean portion of the HCE. Line transect surveys were conducted during 2016-2021 between 18° S and 41° S and up to ~ 200 km offshore, and data were analyzed using distance sampling methods. Group counts were modelled as a function of environmental variables using single step Bayesian Binomial N-mixture model (BNMM), which allows full uncertainty propagation between model components. By using spatially explicit predictions of cetacean densities and observed vessel densities in the HCE, we provide quantitative assessments on the relative probability of cetaceans encountering vessels (RPCEV). Dusky dolphin and fin whale showed the largest distribution overlap with industrial and artisanal fishery fleets. Our results highlight areas where effort should be prioritized to address the extant but unquantified negative interactions between vessels and cetaceans in Chilean HCE.


Assuntos
Balaenoptera , Golfinhos , Baleia Comum , Animais , Teorema de Bayes , Cetáceos , Chile , Ecossistema , Cachalote
4.
Sci Rep ; 12(1): 7487, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523932

RESUMO

Humpback whales (Megaptera novaeangliae) perform seasonal migrations from high latitude feeding grounds to low latitude breeding and calving grounds. Feeding grounds at polar regions are currently experiencing major ecosystem modifications, therefore, quantitatively assessing species responses to habitat characteristics is crucial for understanding how whales might respond to such modifications. We analyzed satellite telemetry data from 22 individual humpback whales in the Southwest Atlantic Ocean (SWA). Tagging effort was divided in two periods, 2003-2012 and 2016-2019. Correlations between whale's movement parameters and environmental variables were used as proxy for inferring behavioral responses to environmental variation. Two versions of a covariate-driven continuous-time correlated random-walk state-space model, were fitted to the data: i) Population-level models (P-models), which assess correlation parameters pooling data across all individuals or groups, and ii) individual-level models (I-models), fitted independently for each tagged whale. Area of Restricted Search behavior (slower and less directionally persistent movement, ARS) was concentrated at cold waters south of the Polar Front (~ 50°S). The best model showed that ARS was expected to occur in coastal areas and over ridges and seamounts. Ice coverage during August of each year was a consistent predictor of ARS across models. Wind stress curl and sea surface temperature anomalies were also correlated with movement parameters but elicited larger inter-individual variation. I-models were consistent with P-models' predictions for the case of females accompanied by calves (mothers), while males and those of undetermined sex (males +) presented more variability as a group. Spatial predictions of humpback whale behavioral responses showed that feeding grounds for this population are concentrated in the complex system of islands, ridges, and rises of the Scotia Sea and the northern Weddell Ridge. More southernly incursions were observed in recent years, suggesting a potential response to increased temperature and large ice coverage reduction observed in the late 2010s. Although, small sample size and differences in tracking duration precluded appropriately testing predictions for such a distributional shift, our modelling framework showed the efficiency of borrowing statistical strength during data pooling, while pinpointing where more complexity should be added in the future as additional data become available.


Assuntos
Jubarte , Animais , Oceano Atlântico , Cetáceos , Ecossistema , Feminino , Jubarte/fisiologia , Gelo , Masculino
5.
PLoS One ; 16(11): e0259541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34788309

RESUMO

The population of humpback whales (Megaptera novaeangliae) wintering off eastern South America was exploited by commercial whaling almost to the point of extinction in the mid-twentieth century. Since cessation of whaling in the 1970s it is recovering, but the timing and level of recovery is uncertain. We implemented a Bayesian population dynamics model describing the population's trajectory from 1901 and projecting it to 2040 to revise a previous population status assessment that used Sampling-Importance-Resampling in a Bayesian framework. Using our alternative method for model fitting (Markov chain Monte Carlo), which is more widely accessible to ecologists, we replicate a "base case scenario" to verify the effect on model results, and introduce additional data to update the status assessment. Our approach allowed us to widen the previous informative prior on carrying capacity to better reflect scientific uncertainty around historical population levels. The updated model provided more precise estimates for population sizes over the period considered (1901-2040) and suggests that carrying capacity (K: median 22,882, mean 22,948, 95% credible interval [CI] 22,711-23,545) and minimum population size (N1958: median 305, mean 319, 95% CI 271-444) might be lower than previously estimated (K: median 24,558, mean 25,110, 95% CI 22,791-31,118; N1958: median 503, mean 850, 95% CI 159-3,943). However, posterior 95% credible intervals of parameters in the updated model overlap those of the previous study. Our approach provides an accessible framework for investigating the status of depleted animal populations for which information is available on historical mortality (e.g., catches) and intermittent estimates of population size and/or trend.


Assuntos
Jubarte/fisiologia , Animais , Teorema de Bayes , Densidade Demográfica
6.
Sci Rep ; 11(1): 2709, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526800

RESUMO

Defining priority areas and risk evaluation is of utmost relevance for endangered species` conservation. For the blue whale (Balaenoptera musculus), we aim to assess environmental habitat selection drivers, priority areas for conservation and overlap with vessel traffic off northern Chilean Patagonia (NCP). For this, we implemented a single-step continuous-time correlated-random-walk model which accommodates observational error and movement parameters variation in relation to oceanographic variables. Spatially explicit predictions of whales' behavioral responses were combined with density predictions from previous species distribution models (SDM) and vessel tracking data to estimate the relative probability of vessels encountering whales and identifying areas where interaction is likely to occur. These estimations were conducted independently for the aquaculture, transport, artisanal fishery, and industrial fishery fleets operating in NCP. Blue whale movement patterns strongly agreed with SDM results, reinforcing our knowledge regarding oceanographic habitat selection drivers. By combining movement and density modeling approaches we provide a stronger support for purported priority areas for blue whale conservation and how they overlap with the main vessel traffic corridor in the NCP. The aquaculture fleet was one order of magnitude larger than any other fleet, indicating it could play a decisive role in modulating potential negative vessel-whale interactions within NCP.


Assuntos
Balaenoptera , Conservação dos Recursos Naturais/métodos , Ecossistema , Espécies em Perigo de Extinção , Modelos Teóricos , Navios , Animais , Chile
7.
Sci Rep ; 10(1): 4871, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184421

RESUMO

Humpback whales (Megaptera novaeangliae) are known for their nearshore distribution during the breeding season, but their pelagic habitat use patterns remain mostly unexplored. From 2016 to 2018, 18 humpback whales were equipped with depth-recording satellite tags (SPLASH10) to shed light on environmental and social drivers of seamount association around New Caledonia in the western South Pacific. Movement paths were spatially structured around shallow seamounts (<200 m). Indeed, two males stopped over the Lord Howe seamount chain during the first-ever recorded longitudinal transit between New Caledonia and the east coast of Australia. Residence time significantly increased with proximity to shallow seamounts, while dive depth increased in the vicinity of seafloor ridges. Most of the 7,986 recorded dives occurred above 80 m (88.5%), but deep dives (>80 m, max 616 m) were also recorded (11.5%), including by maternal females. Deep dives often occurred in series and were characterized by U-shapes suggesting high energy expenditure. This study provides new insights into the formerly overlooked use of pelagic habitats by humpback whales during the breeding season. Given increasing anthropogenic threats on deep sea habitats worldwide, this work has implications for the conservation of vulnerable marine ecosystems.


Assuntos
Jubarte/fisiologia , Tecnologia de Sensoriamento Remoto/instrumentação , Natação/fisiologia , Animais , Comportamento Animal/fisiologia , Ecossistema , Feminino , Masculino , Nova Caledônia , Comunicações Via Satélite
8.
R Soc Open Sci ; 6(10): 190368, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31824687

RESUMO

The recovery of whale populations from centuries of exploitation will have important management and ecological implications due to greater exposure to anthropogenic activities and increasing prey consumption. Here, a Bayesian population model integrates catch data, estimates of abundance, and information on genetics and biology to assess the recovery of western South Atlantic (WSA) humpback whales (Megaptera novaeangliae). Modelling scenarios evaluated the sensitivity of model outputs resulting from the use of different data, different model assumptions and uncertainty in catch allocation and in accounting for whales killed but not landed. A long period of exploitation drove WSA humpback whales to the brink of extinction. They declined from nearly 27 000 (95% PI = 22 800-33 000) individuals in 1830 to only 450 (95% PI = 200-1400) whales in the mid-1950s. Protection led to a strong recovery and the current population is estimated to be at 93% (95% PI = 73-100%) of its pre-exploitation size. The recovery of WSA humpback whales may result in large removals of their primary prey, the Antarctic krill (Euphausia superba), and has the potential to modify the community structure in their feeding grounds. Continued monitoring is needed to understand how these whales will respond to modern threats and to climate-driven changes to their habitats.

9.
PeerJ ; 6: e4695, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736336

RESUMO

BACKGROUND: The most traditional scheme for migration among baleen whales comprises yearly migrations between productive waters at high latitude summer feeding grounds and warmer waters at lower latitudes where whales calve and mate, but rarely feed. Evidence indicates, however, that large departures from this scheme exist among populations and individuals. Furthermore, for some populations there is virtually no information on migratory pathways and destinations. Such is the case of Chilean blue whales throughout the Eastern South Pacific; hence, the goal of this study was to assess its migratory behavior. METHODS: Dedicated marine surveys and satellite tagging efforts were undertaken during the austral summer and early autumn on blue whale feeding grounds off Chilean Northern Patagonia (CNP) during 2013, 2015 and 2016. Positional data derived from satellite tags regarding movement patterns and behavior were analyzed using Bayesian switching first-difference correlated random walk models. RESULTS: We instrumented 10 CNP blue whales with satellite transmitters and documented individual variation in departure time, northbound migratory routes and potential wintering grounds. The onset of migration occurred from mid/late austral autumn to well into the austral winter. Blue whales moved in various directions, but ultimately converged toward a general NW movement direction along a wide corridor exceeding 2,000 km. Area-Restricted Search behavior was exhibited within fjords and channels of CNP and also South of Galapagos Archipelago (GA) and northern Peru, but never during migration. Interestingly, dive profiles for one whale that reached GA showed a sharp and consistent increase in depth north of 5°S and extreme deep dives of up to 330 m. DISCUSSION: Information derived from satellite tagged blue whales in this study is the first of its kind off the Eastern Southern Pacific. Our results provide valuable information on their migratory timing, routes and behavior on their northbound migration, particularly regarding the varied migratory plasticity for this particular population. Our results also highlight the first record of two complete migratory paths between CNP and GA and strengthen the hypothesis that GA waters correspond to a potential wintering destination for CNP blue whales. We further hypothesize that this area might be selected because of its biological productivity, which could provide feeding opportunities during the breeding season. Our results suggest that special efforts should be put forward to identify blue whale critical areas and understand key behavioral aspects in order to provide the basis for their conservation on a regional context (i.e., reducing potential ship strike and promote Marine Protected Area (MPA) implementation in Chile, Ecuador and Peru). Indeed, we suggest joint blue whale conservation efforts at the regional level in order to identify and determine potential threats and impacts and, most importantly, implement prospective management actions.

10.
PLoS One ; 13(3): e0194213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29534086

RESUMO

Estimation of visibility bias is critical to accurately compute abundance of wild populations. The franciscana, Pontoporia blainvillei, is considered the most threatened small cetacean in the southwestern Atlantic Ocean. Aerial surveys are considered the most effective method to estimate abundance of this species, but many existing estimates have been considered unreliable because they lack proper estimation of correction factors for visibility bias. In this study, helicopter surveys were conducted to determine surfacing-diving intervals of franciscanas and to estimate availability for aerial platforms. Fifteen hours were flown and 101 groups of 1 to 7 franciscanas were monitored, resulting in a sample of 248 surface-dive cycles. The mean surfacing interval and diving interval times were 16.10 seconds (SE = 9.74) and 39.77 seconds (SE = 29.06), respectively. Availability was estimated at 0.39 (SE = 0.01), a value 16-46% greater than estimates computed from diving parameters obtained from boats or from land. Generalized mixed-effects models were used to investigate the influence of biological and environmental predictors on the proportion of time franciscana groups are visually available to be seen from an aerial platform. These models revealed that group size was the main factor influencing the proportion at surface. The use of negatively biased estimates of availability results in overestimation of abundance, leads to overly optimistic assessments of extinction probabilities and to potentially ineffective management actions. This study demonstrates that estimates of availability must be computed from suitable platforms to ensure proper conservation decisions are implemented to protect threatened species such as the franciscana.


Assuntos
Golfinhos , Monitorização de Parâmetros Ecológicos/métodos , Espécies em Perigo de Extinção/estatística & dados numéricos , Aeronaves , Animais , Oceano Atlântico , Viés , Monitorização de Parâmetros Ecológicos/instrumentação , Modelos Lineares
11.
R Soc Open Sci ; 4(8): 170629, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28879004

RESUMO

Cuvier's beaked whales (Ziphius cavirostris) have stranded in association with mid-frequency active sonar (MFAS) use, and though the causative mechanism linking these events remains unclear, it is believed to be behaviourally mediated. To determine whether MFAS use was associated with behavioural changes in this species, satellite tags were used to record the diving and movements of 16 Cuvier's beaked whales for up to 88 days in a region of frequent MFAS training off the coast of Southern California. Tag data were combined with summarized records of concurrent bouts of high-power, surface-ship and mid-power, helicopter-deployed MFAS use, along with other potential covariates, in generalized additive mixed-effects models. Deep dives, shallow dives and surface intervals tended to become longer during MFAS use, with some variation associated with the total amount of overlapping MFAS during the behaviour. These changes in dives and surface intervals contributed to a longer interval between deep dives, a proxy for foraging disruption in this species. Most responses intensified with proximity and were more pronounced during mid-power than high-power MFAS use at comparable distances within approximately 50 km, despite the significantly lower source level of mid-power MFAS. However, distance-mediated responses to high-power MFAS, and increased deep dive intervals during mid-power MFAS, were evident up to approximately 100 km away.

12.
J Exp Biol ; 220(Pt 20): 3717-3723, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28819052

RESUMO

Whale tracking tags often penetrate semi-rigid blubber, with intramuscular sharp tips and toggling barbs under the subdermal sheath to reduce premature shedding. Tag sites can show persistent regional swellings or depressions. Fibroelastic blubber grips a tag, so if muscle shears relative to blubber during locomotion, the tag tip could cavitate the muscle within overall shearing distance. We modeled shearing of blubber relative to muscle, within the dorsal-ventral peduncular movement range of four common dolphin (Delphinus delphis) cadavers (mean length 186 cm). The net change in angle and hence tip distance moved was calculated with dorsal and ventral flexion, and compared between 1.5 mm diameter needles inserted into blubber only and through blubber into muscle. The greatest shearing value was 3.6 cm, and shearing was most pronounced in the areas ventral and caudal to the dorsal fin. Scaled dummy tags were also inserted and the animal cyclically flexed dorsally and ventrally for 18 h. Tag sites were dissected and cavities around the tag tips documented. If this shearing is comparable in large whales, depressions and regional swellings observed with intramuscular tracking tags are likely the result of tissue loss and repair, respectively. Placing tags para-sagittally anterior to the dorsal fin would cause the least trauma, but pain from such tags remains a concern.


Assuntos
Tecido Adiposo/fisiologia , Golfinhos Comuns/fisiologia , Músculo Esquelético/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos
13.
Sci Rep ; 7(1): 3365, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611466

RESUMO

Mediterranean fin whales comprise a genetically distinct population, listed as Vulnerable (VU) in the IUCN Red List. Collisions with vessels are believed to represent the main cause of human-induced mortality. The identification of critical habitats (including migration routes) incorporating satellite telemetry data is therefore crucial to develop focussed conservation efforts. Between 2012 and 2015 thirteen fin whales were equipped with satellite transmitters, 8 in the Pelagos Sanctuary (although two ceased within two days) and 5 in the Strait of Sicily, to evaluate movements and habitat use. A hierarchical switching state-space model was used to identify transiting and area-restricted search (ARS) behaviours, believed to indicate foraging activities. All whales undertook mid- to long-distance migrations, crossing some of the world's busiest maritime routes. Areas where the animals predominantly engaged in ARS behaviour were identified in both study areas. The telemetry data were compared with results from ecosystem niche modelling, and showed that 80% of tagged whale positions was near (<7 km) the closest suitable habitat. The results contribute to the view that precautionary management should include establishment of a coordinated and dynamic basin-wide management scheme; if appropriate, this may include the establishment of protected areas by specific regional Conventions.


Assuntos
Migração Animal/fisiologia , Ecossistema , Baleia Comum/fisiologia , Dinâmica Populacional , Tecnologia de Sensoriamento Remoto/métodos , Comunicações Via Satélite , Animais , Mar Mediterrâneo , Estações do Ano
14.
PLoS One ; 11(10): e0164596, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27736958

RESUMO

The western South Atlantic (WSA) humpback whale population inhabits the coast of Brazil during the breeding and calving season in winter and spring. This population was depleted to near extinction by whaling in the mid-twentieth century. Despite recent signs of recovery, increasing coastal and offshore development pose potential threats to these animals. Therefore, continuous monitoring is needed to assess population status and support conservation strategies. The aim of this work was to present ship-based line-transect estimates of abundance for humpback whales in their WSA breeding ground and to investigate potential changes in population size. Two cruises surveyed the coast of Brazil during August-September in 2008 and 2012. The area surveyed in 2008 corresponded to the currently recognized population breeding area; effort in 2012 was limited due to unfavorable weather conditions. WSA humpback whale population size in 2008 was estimated at 16,410 (CV = 0.228, 95% CI = 10,563-25,495) animals. In order to compare abundance between 2008 and 2012, estimates for the area between Salvador and Cabo Frio, which were consistently covered in the two years, were computed at 15,332 (CV = 0.243, 95% CI = 9,595-24,500) and 19,429 (CV = 0.101, 95% CI = 15,958-23,654) whales, respectively. The difference in the two estimates represents an increase of 26.7% in whale numbers in a 4-year period. The estimated abundance for 2008 is considered the most robust for the WSA humpback whale population because the ship survey conducted in that year minimized bias from various sources. Results presented here indicate that in 2008, the WSA humpback whale population was at least around 60% of its estimated pre-modern whaling abundance and that it may recover to its pre-exploitation size sooner than previously estimated.


Assuntos
Monitoramento Ambiental/instrumentação , Jubarte/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Oceano Atlântico , Brasil , Cruzamento , Densidade Demográfica , Estações do Ano , Navios
15.
PLoS One ; 11(5): e0155841, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27243455

RESUMO

Temporal and spatial patterns of cetacean diversity and distribution were investigated through eight ship-based surveys carried out during spring and autumn between 2009 and 2014 on the outer continental shelf (~150m) and slope (1500m) off southeastern and southern Brazil (~23°S to ~34°S). The survey area was divided into southeast and south areas according to their oceanographic characteristics. Twenty-one species were observed in 503 sightings. The overall number of species was similar between the two areas, though it was higher in the spring in the south area. Five species were dominant and diversity varied more seasonally than spatially. ANOVA and kernel analyses showed that overall cetacean densities were higher in spring compared to autumn. Physeter macrocephalus, the most frequent species, concentrated throughout the south area at depths over 1000m in both seasons. Despite the overlapped occurrence at a broader scale, small delphinids presented latitudinal and in-offshore gradients as well as seasonal variation in distribution patterns, which could indicate habitat partitioning between some species. Delphinus delphis was only recorded in the south and its density decreased in areas where the presence of Stenella frontalis increased, mainly beyond the 250m isobath. Densities of S. longirostris and S. attenuata increased in lower latitudes and beyond the shelf break. The large delphinids Tursiops truncatus and Globicephala melas formed mixed groups in many occasions and were observed along the study area around depths of 500m. Grampus griseus was twice as frequent in the south area and densities increased in waters deeper than 600m. As expected, densities of both small and large migratory whales were higher during spring, over the continental slope, in the southeast area. The results presented here provided strong evidence on the importance of the outer continental shelf and slope to a diverse community of cetaceans occurring in the subtropical Southwestern Atlantic.


Assuntos
Golfinhos/classificação , Baleias/classificação , Animais , Biodiversidade , Brasil , Oceanos e Mares , População
16.
R Soc Open Sci ; 3(3): 150669, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27069657

RESUMO

Accurate estimation of historical abundance provides an essential baseline for judging the recovery of the great whales. This is particularly challenging for whales hunted prior to twentieth century modern whaling, as population-level catch records are often incomplete. Assessments of whale recovery using pre-modern exploitation indices are therefore rare, despite the intensive, global nature of nineteenth century whaling. Right whales (Eubalaena spp.) were particularly exploited: slow swimmers with strong fidelity to sheltered calving bays, the species made predictable and easy targets. Here, we present the first integrated population-level assessment of the whaling impact and pre-exploitation abundance of a right whale, the New Zealand southern right whale (E. australis). In this assessment, we use a Bayesian population dynamics model integrating multiple data sources: nineteenth century catches, genetic constraints on bottleneck size and individual sightings histories informing abundance and trend. Different catch allocation scenarios are explored to account for uncertainty in the population's offshore distribution. From a pre-exploitation abundance of 28 800-47 100 whales, nineteenth century hunting reduced the population to approximately 30-40 mature females between 1914 and 1926. Today, it stands at less than 12% of pre-exploitation abundance. Despite the challenges of reconstructing historical catches and population boundaries, conservation efforts of historically exploited species benefit from targets for ecological restoration.

17.
R Soc Open Sci ; 3(12): 160616, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28083104

RESUMO

Assessing the movement patterns and key habitat features of breeding humpback whales is a prerequisite for the conservation management of this philopatric species. To investigate the interactions between humpback whale movements and environmental conditions off Madagascar, we deployed 25 satellite tags in the northeast and southwest coast of Madagascar. For each recorded position, we collated estimates of environmental variables and computed two behavioural metrics: behavioural state of 'transiting' (consistent/directional) versus 'localized' (variable/non-directional), and active swimming speed (i.e. speed relative to the current). On coastal habitats (i.e. bathymetry < 200 m and in adjacent areas), females showed localized behaviour in deep waters (191 ± 20 m) and at large distances (14 ± 0.6 km) from shore, suggesting that their breeding habitat extends beyond the shallowest waters available close to the coastline. Males' active swimming speed decreased in shallow waters, but environmental parameters did not influence their likelihood to exhibit localized movements, which was probably dominated by social factors instead. In oceanic habitats, both males and females showed localized behaviours in shallow waters and favoured high chlorophyll-a concentrations. Active swimming speed accounts for a large proportion of observed movement speed; however, breeding humpback whales probably exploit prevailing ocean currents to maximize displacement. This study provides evidence that coastal areas, generally subject to strong human pressure, remain the core habitat of humpback whales off Madagascar. Our results expand the knowledge of humpback whale habitat use in oceanic habitat and response to variability of environmental factors such as oceanic current and chlorophyll level.

18.
R Soc Open Sci ; 2(11): 150489, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26716006

RESUMO

The humpback whale population of New Caledonia appears to display a novel migratory pattern characterized by multiple directions, long migratory paths and frequent pauses over seamounts and other shallow geographical features. Using satellite-monitored radio tags, we tracked 34 whales for between 5 and 110 days, travelling between 270 and 8540 km on their southward migration from a breeding ground in southern New Caledonia. Mean migration speed was 3.53±2.22 km h(-1), while movements within the breeding ground averaged 2.01±1.63 km h(-1). The tag data demonstrate that seamounts play an important role as offshore habitats for this species. Whales displayed an intensive use of oceanic seamounts both in the breeding season and on migration. Seamounts probably serve multiple and important roles as breeding locations, resting areas, navigational landmarks or even supplemental feeding grounds for this species, which can be viewed as a transient component of the seamount communities. Satellite telemetry suggests that seamounts represent an overlooked cryptic habitat for the species. The frequent use by humpback whales of such remote locations has important implications for conservation and management.

19.
J Acoust Soc Am ; 138(3): 1696-701, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26428807

RESUMO

Acoustic parameters of killer whale (Orcinus orca) whistles were described for the western South Atlantic Ocean and highlight the occurrence of high frequency whistles. Killer whale signals were recorded on December of 2012, when a pod of four individuals was observed harassing a group of sperm whales. The high frequency whistles were highly stereotyped and were modulated mostly at ultrasonic frequencies. Compared to other contour types, the high frequency whistles are characterized by higher bandwidths, shorter durations, fewer harmonics, and higher sweep rates. The results add to the knowledge of vocal behavior of this species.


Assuntos
Vocalização Animal/fisiologia , Orca/fisiologia , Animais , Oceano Atlântico , Psicoacústica , Comportamento Social , Espectrografia do Som
20.
Biol Lett ; 7(5): 674-9, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-21508023

RESUMO

Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored.


Assuntos
Migração Animal , Jubarte/fisiologia , Natação , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...