Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 7(6): 739-747, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34031540

RESUMO

Spatiotemporal control of cell division is essential for the growth and development of multicellular organisms. In plant cells, proper cell plate insertion during cytokinesis relies on the premitotic establishment of the division plane at the cell cortex. Two plant-specific cytoskeleton arrays, the preprophase band (PPB) and the phragmoplast, play important roles in division-plane orientation and cell plate formation, respectively1. Microtubule organization and dynamics and their communication with membranes at the cortex and cell plate are coordinated by multiple, mostly distinct microtubule-associated proteins2. How division-plane selection and establishment are linked, however, is still unknown. Here, we report members of the Arabidopsis IQ67 DOMAIN (IQD) family3 as microtubule-targeted proteins that localize to the PPB and phragmoplast and additionally reside at the cell plate and a polarized cortical region including the cortical division zone (CDZ). IQDs physically interact with PHRAGMOPLAST ORIENTING KINESIN (POK) proteins4,5 and PLECKSTRIN HOMOLOGY GTPase ACTIVATING (PHGAP) proteins6, which are core components of the CDZ1. The loss of IQD function impairs PPB formation and affects CDZ recruitment of POKs and PHGAPs, resulting in division-plane positioning defects. We propose that IQDs act as cellular scaffolds that facilitate PPB formation and CDZ set-up during symmetric cell division.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dinitrobenzenos , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mutação , Filogenia , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas , Prófase , Domínios Proteicos , Sulfanilamidas , Nicotiana/genética , Proteínas de Transporte Vesicular/metabolismo
2.
Methods Mol Biol ; 1992: 151-171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148037

RESUMO

The microtubule cytoskeleton plays important roles in cell morphogenesis. To investigate the mechanisms of cytoskeletal organization, for example, during growth or development, in genetic studies, or in response to environmental stimuli, image analysis tools for quantitative assessment are needed. Here, we present a method for texture measure-based quantification and comparative analysis of global microtubule cytoskeleton patterns and subsequent visualization of output data. In contrast to other approaches that focus on the extraction of individual cytoskeletal fibers and analysis of their orientation relative to the growth axis, CytoskeletonAnalyzer2D quantifies cytoskeletal organization based on the analysis of local binary patterns. CytoskeletonAnalyzer2D thus is particularly well suited to study cytoskeletal organization in cells where individual fibers are difficult to extract or which lack a clearly defined growth axis, such as leaf epidermal pavement cells. The tool is available as ImageJ plugin and can be combined with publicly available software and tools, such as R and Cytoscape, to visualize similarity networks of cytoskeletal patterns.


Assuntos
Citoesqueleto/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Microtúbulos/ultraestrutura , Nicotiana/citologia , Imagem Óptica/métodos , Actinas/ultraestrutura , Microscopia Confocal/métodos , Software , Nicotiana/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA