Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38713618

RESUMO

Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolaemia, atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously. Cholesterol levels, its uptake and excretion were studied in mice deficient for low density lipoprotein receptor and Lasp1 (Ldlr-/-Lasp1-/- mice) upon feeding a high fat diet, and in LASP1-knockdown, differentiated human intestinal epithelial Caco-2 cells. Compared to diet-fed Ldlr-/- control mice, Ldlr-/-Lasp1-/- mice displayed a reduction in serum cholesterol levels. Mechanistically, we identified a new role of LASP1 in controlling the translocation of the intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) to the apical cell surface, which was limited in LASP1-knockdwon human CaCo-2 enterocytes and in the intestine of Ldlr-/- Lasp1-/- compared to Ldlr-/-mice, linked to LASP1-pAKT signaling but not CDC42 activation. In line, a reduction in cholesterol reabsorption was noted in LASP1-knockdown CaCo-2 cells in vitro, and an enhanced cholesterol excretion via the feces was observed in Ldlr-/- Lasp1-/- mice. These data uncover a novel function of Lasp1 in cholesterol trafficking, promoting cholesterol reabsorption in the intestine. Targeting LASP1 locally could thus represent a novel targeting strategy to ameliorate hypercholesterolemia and associated diseases.

2.
Nat Commun ; 15(1): 3599, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678014

RESUMO

Targeting the supportive tumor microenvironment (TME) is an approach of high interest in cancer drug development. However, assessing TME-targeted drug candidates presents a unique set of challenges. We develop a comprehensive screening platform that allows monitoring, quantifying, and ranking drug-induced effects in self-organizing, vascularized tumor spheroids (VTSs). The confrontation of four human-derived cell populations makes it possible to recreate and study complex changes in TME composition and cell-cell interaction. The platform is modular and adaptable for tumor entity or genetic manipulation. Treatment effects are recorded by light sheet fluorescence microscopy and translated by an advanced image analysis routine in processable multi-parametric datasets. The system proved to be robust, with strong interassay reliability. We demonstrate the platform's utility for evaluating TME-targeted antifibrotic and antiangiogenic drugs side-by-side. The platform's output enabled the differential evaluation of even closely related drug candidates according to projected therapeutic needs.


Assuntos
Neoplasias da Mama , Microscopia de Fluorescência , Esferoides Celulares , Microambiente Tumoral , Humanos , Microambiente Tumoral/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Microscopia de Fluorescência/métodos , Feminino , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia
3.
Cardiovasc Res ; 120(4): 385-402, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38175781

RESUMO

AIMS: Cyclophilin A (CyPA) induces leucocyte recruitment and platelet activation upon release into the extracellular space. Extracellular CyPA therefore plays a critical role in immuno-inflammatory responses in tissue injury and thrombosis upon platelet activation. To date, CD147 (EMMPRIN) has been described as the primary receptor mediating extracellular effects of CyPA in platelets and leucocytes. The receptor for advanced glycation end products (RAGE) shares inflammatory and prothrombotic properties and has also been found to have similar ligands as CD147. In this study, we investigated the role of RAGE as a previously unknown interaction partner for CyPA. METHODS AND RESULTS: Confocal imaging, proximity ligation, co-immunoprecipitation, and atomic force microscopy were performed and demonstrated an interaction of CyPA with RAGE on the cell surface. Static and dynamic cell adhesion and chemotaxis assays towards extracellular CyPA using human leucocytes and leucocytes from RAGE-deficient Ager-/- mice were conducted. Inhibition of RAGE abrogated CyPA-induced effects on leucocyte adhesion and chemotaxis in vitro. Accordingly, Ager-/- mice showed reduced leucocyte recruitment and endothelial adhesion towards CyPA in vivo. In wild-type mice, we observed a downregulation of RAGE on leucocytes when endogenous extracellular CyPA was reduced. We furthermore evaluated the role of RAGE for platelet activation and thrombus formation upon CyPA stimulation. CyPA-induced activation of platelets was found to be dependent on RAGE, as inhibition of RAGE, as well as platelets from Ager-/- mice showed a diminished activation and thrombus formation upon CyPA stimulation. CyPA-induced signalling through RAGE was found to involve central signalling pathways including the adaptor protein MyD88, intracellular Ca2+ signalling, and NF-κB activation. CONCLUSION: We propose RAGE as a hitherto unknown receptor for CyPA mediating leucocyte as well as platelet activation. The CyPA-RAGE interaction thus represents a novel mechanism in thrombo-inflammation.


Assuntos
Ciclofilina A , Trombose , Camundongos , Humanos , Animais , Ciclofilina A/genética , Ciclofilina A/metabolismo , Produtos Finais de Glicação Avançada , Ligantes , Inflamação , Basigina/metabolismo , Trombose/genética
4.
Biochem Pharmacol ; 219: 115916, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979705

RESUMO

The thromboxane A2 receptor (TP) has been shown to play a role in angiotensin II (Ang II)-mediated hypertension and pathological vascular remodeling. To assess the impact of vascular TP on Ang II-induced hypertension, atherogenesis, and pathological aortic alterations, i.e. aneurysms, we analysed Western-type diet-fed and Ang II-infused TPVSMC KO/Ldlr KO, TPEC KO/Ldlr KO mice and their respective wild-type littermates (TPWT/Ldlr KO). These analyses showed that neither EC- nor VSMC-specific deletion of the TP significantly affected basal or Ang II-induced blood pressure or aortic atherosclerotic lesion area. In contrast, VSMC-specific TP deletion abolished and EC-specific TP deletion surprisingly reduced the ex vivo reactivity of aortic rings to the TP agonist U-46619, whereas VSMC-specific TP knockout also diminished the ex vivo response of aortic rings to Ang II. Furthermore, despite similar systemic blood pressure, there was a trend towards less atherogenesis in the aortic arch and a trend towards fewer pathological aortic alterations in Ang II-treated female TPVSMC KO/Ldlr KO mice. Survival was impaired in male mice after Ang II infusion and tended to be higher in TPVSMC KO/Ldlr KO mice than in TPWT/Ldlr KO littermates. Thus, our data may suggest a deleterious role of the TP expressed in VSMC in the pathogenesis of Ang II-induced aortic atherosclerosis in female mice, and a surprising role of the endothelial TP in TP-mediated aortic contraction. However, future studies are needed to substantiate and further elucidate the role of the vascular TP in the pathogenesis of Ang II-induced hypertension, aortic atherosclerosis and aneurysm formation.


Assuntos
Aterosclerose , Hipertensão , Receptores de Tromboxanos , Animais , Feminino , Masculino , Camundongos , Angiotensina II/toxicidade , Aorta , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Aterosclerose/patologia , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Tromboxanos/genética
5.
Nat Commun ; 14(1): 6858, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891230

RESUMO

T cell exhaustion is a hallmark of cancer and persistent infections, marked by inhibitory receptor upregulation, diminished cytokine secretion, and impaired cytolytic activity. Terminally exhausted T cells are steadily replenished by a precursor population (Tpex), but the metabolic principles governing Tpex maintenance and the regulatory circuits that control their exhaustion remain incompletely understood. Using a combination of gene-deficient mice, single-cell transcriptomics, and metabolomic analyses, we show that mitochondrial insufficiency is a cell-intrinsic trigger that initiates the functional exhaustion of T cells. At the molecular level, we find that mitochondrial dysfunction causes redox stress, which inhibits the proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α) and promotes the transcriptional and metabolic reprogramming of Tpex cells into terminally exhausted T cells. Our findings also bear clinical significance, as metabolic engineering of chimeric antigen receptor (CAR) T cells is a promising strategy to enhance the stemness and functionality of Tpex cells for cancer immunotherapy.


Assuntos
Glicólise , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Neoplasias/terapia , Mitocôndrias , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
6.
Nat Commun ; 14(1): 4622, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528097

RESUMO

Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe-/- mice as well as hematopoietic deletion in Ldlr-/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe-/-Rag2-/-Card9-/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1ß production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.


Assuntos
Aterosclerose , Humanos , Animais , Camundongos , Aterosclerose/metabolismo , Autofagia/genética , Apolipoproteínas E/genética , Lipídeos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Camundongos Knockout , Camundongos Endogâmicos C57BL
7.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499656

RESUMO

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismo
8.
Front Cardiovasc Med ; 10: 1068390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255709

RESUMO

A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.

9.
Cell Mol Gastroenterol Hepatol ; 16(2): 201-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37054914

RESUMO

BACKGROUND & AIMS: A single hepatitis B virus (HBV) particle is sufficient to establish chronic infection of the liver after intravenous injection, suggesting that the virus targets hepatocytes via a highly efficient transport pathway. We therefore investigated whether HBV uses a physiological liver-directed pathway that supports specific host-cell targeting in vivo. METHODS: We established the ex vivo perfusion of intact human liver tissue that recapitulates the liver physiology to investigate HBV liver targeting. This model allowed us to investigate virus-host cell interactions in a cellular microenvironment mimicking the in vivo situation. RESULTS: HBV was rapidly sequestered by liver macrophages within 1 hour after a virus pulse perfusion but was detected in hepatocytes only after 16 hours. We found that HBV associates with lipoproteins in serum and within machrophages. Electron and immunofluorescence microscopy corroborated a co-localization in recycling endosomes within peripheral and liver macrophages. Recycling endosomes accumulated HBV and cholesterol, followed by transport of HBV back to the cell surface along the cholesterol efflux pathway. To reach hepatocytes as final target cells, HBV was able to utilize the hepatocyte-directed cholesterol transport machinery of macrophages. CONCLUSIONS: Our results propose that by binding to liver targeted lipoproteins and using the reverse cholesterol transport pathway of macrophages, HBV hijacks the physiological lipid transport pathways to the liver to most efficiently reach its target organ. This may involve transinfection of liver macrophages and result in deposition of HBV in the perisinusoidal space from where HBV can bind its receptor on hepatocytes.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Lipídeos
10.
Cardiovasc Res ; 119(3): 772-785, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35950218

RESUMO

AIMS: Macrophages have a critical and dual role in post-ischaemic cardiac repair, as they can foster both tissue healing and damage. Multiple subsets of tissue resident and monocyte-derived macrophages coexist in the infarcted heart, but their precise identity, temporal dynamics, and the mechanisms regulating their acquisition of discrete states are not fully understood. To address this, we used multi-modal single-cell immune profiling, combined with targeted cell depletion and macrophage fate mapping, to precisely map monocyte/macrophage transitions after experimental myocardial infarction. METHODS AND RESULTS: We performed single-cell transcriptomic and cell-surface marker profiling of circulating and cardiac immune cells in mice challenged with acute myocardial infarction, and integrated single-cell transcriptomes obtained before and at 1, 3, 5, 7, and 11 days after infarction. Using complementary strategies of CCR2+ monocyte depletion and fate mapping of tissue resident macrophages, we determined the origin of cardiac macrophage populations. The macrophage landscape of the infarcted heart was dominated by monocyte-derived cells comprising two pro-inflammatory populations defined as Isg15hi and MHCII+Il1b+, alongside non-inflammatory Trem2hi cells. Trem2hi macrophages were observed in the ischaemic area, but not in the remote viable myocardium, and comprised two subpopulations sequentially populating the heart defined as Trem2hiSpp1hi monocyte-to-macrophage intermediates, and fully differentiated Trem2hiGdf15hi macrophages. Cardiac Trem2hi macrophages showed similarities to 'lipid-associated macrophages' found in mouse models of metabolic diseases and were observed in the human heart, indicating conserved features of this macrophage state across diseases and species. Ischaemic injury induced a shift of circulating Ly6Chi monocytes towards a Chil3hi state with granulocyte-like features, but the acquisition of the Trem2hi macrophage signature occurred in the ischaemic tissue. In vitro, macrophages acquired features of the Trem2hi signature following apoptotic-cell efferocytosis. CONCLUSION: Our work provides a comprehensive map of monocyte/macrophage transitions in the ischaemic heart, constituting a valuable resource for further investigating how these cells may be harnessed and modulated to promote post-ischaemic heart repair.


Assuntos
Macrófagos , Infarto do Miocárdio , Camundongos , Humanos , Animais , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Monócitos/metabolismo , Miocárdio/metabolismo , Fagocitose , Camundongos Endogâmicos C57BL
11.
Cardiovasc Res ; 119(8): 1676-1689, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36190844

RESUMO

AIMS: Accumulation of mononuclear phagocytes [monocytes, macrophages, and dendritic cells (DCs)] in the vessel wall is a hallmark of atherosclerosis. Using integrated single-cell analysis of mouse and human atherosclerosis, we here aimed to refine the nomenclature of mononuclear phagocytes in atherosclerotic vessels and to compare their transcriptomic profiles in mouse and human disease. METHODS AND RESULTS: We integrated 12 single-cell RNA-sequencing (scRNA-seq) datasets of immune cells isolated from healthy or atherosclerotic mouse aortas, and data from 11 patients (n = 4 coronary vessels, n = 7 carotid endarterectomy specimens) from two studies. Integration of mouse data identified subpopulations with discrete transcriptomic signatures within previously described populations of aortic resident (Lyve1), inflammatory (Il1b), as well as foamy (Trem2hi) macrophages. We identified unique transcriptomic features distinguishing aortic intimal resident macrophages from atherosclerosis-associated Trem2hi macrophages. Also, populations of Xcr1+ Type 1 classical DCs (cDC1), Cd209a+ cDC2, and mature DCs (Ccr7, Fscn1) with a 'mreg-DC' signature were detected. In humans, we uncovered macrophage and DC populations with gene expression patterns similar to those observed in mice. In particular, core transcripts of the foamy/Trem2hi signature (TREM2, SPP1, GPNMB, CD9) mapped to a specific population of macrophages in human lesions. Comparison of mouse and human data and direct cross-species data integration suggested transcriptionally similar macrophage and DC populations in mice and humans. CONCLUSIONS: We refined the nomenclature of mononuclear phagocytes in mouse atherosclerotic vessels, and show conserved transcriptomic features of macrophages and DCs in atherosclerosis in mice and humans, emphasizing the relevance of mouse models to study mononuclear phagocytes in atherosclerosis.


Assuntos
Aterosclerose , Macrófagos , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Aterosclerose/patologia , Células Dendríticas , Análise de Célula Única , Glicoproteínas de Membrana/metabolismo
13.
Nat Commun ; 13(1): 6592, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329047

RESUMO

JAK2V617F mutation is associated with an increased risk for athero-thrombotic cardiovascular disease, but its role in aortic disease development and complications remains unknown. In a cohort of patients with myeloproliferative neoplasm, JAK2V617F mutation was identified as an independent risk factor for dilation of both the ascending and descending thoracic aorta. Using single-cell RNA-seq, complementary genetically-modified mouse models, as well as pharmacological approaches, we found that JAK2V617F mutation was associated with a pathogenic pro-inflammatory phenotype of perivascular tissue-resident macrophages, which promoted deleterious aortic wall remodeling at early stages, and dissecting aneurysm through the recruitment of circulating monocytes at later stages. Finally, genetic manipulation of tissue-resident macrophages, or treatment with a Jak2 inhibitor, ruxolitinib, mitigated aortic wall inflammation and reduced aortic dilation and rupture. Overall, JAK2V617F mutation drives vascular resident macrophages toward a pathogenic phenotype and promotes dissecting aortic aneurysm.


Assuntos
Aneurisma Aórtico , Dissecção Aórtica , Camundongos , Animais , Dissecção Aórtica/patologia , Fenótipo , Mutação , Macrófagos/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/complicações
14.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36227687

RESUMO

Acute graft versus host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT) inflicted by alloreactive T cells primed in secondary lymphoid organs (SLOs) and subsequent damage to aGvHD target tissues. In recent years, Treg transfer and/or expansion has emerged as a promising therapy to modulate aGvHD. However, cellular niches essential for fostering Tregs to prevent aGvHD have not been explored. Here, we tested whether and to what extent MHC class II (MHCII) expressed on Ccl19+ fibroblastic reticular cells (FRCs) shape the donor CD4+ T cell response during aGvHD. Animals lacking MHCII expression on Ccl19-Cre-expressing FRCs (MHCIIΔCcl19) showed aberrant CD4+ T cell activation in the effector phase, resulting in exacerbated aGvHD that was associated with significantly reduced expansion of Foxp3+ Tregs and invariant NK T (iNKT) cells. Skewed Treg maintenance in MHCIIΔCcl19 mice resulted in loss of protection from aGvHD provided by adoptively transferred donor Tregs. In contrast, although FRCs upregulated costimulatory surface receptors, and although they degraded and processed exogenous antigens after myeloablative irradiation, FRCs were dispensable to activate alloreactive CD4+ T cells in 2 mouse models of aGvHD. In summary, these data reveal an immunoprotective, MHCII-mediated function of FRC niches in secondary lymphoid organs (SLOs) after allo-HCT and highlight a framework of cellular and molecular interactions that regulate CD4+ T cell alloimmunity.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Camundongos , Animais , Linfócitos T Reguladores , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos
15.
Free Radic Biol Med ; 185: 36-45, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35470061

RESUMO

The F2-isoprostane 8-iso-PGF2α (also known as 15-F2t-isoprostane, iPF2α-III, 8-epi PGF2α, 15(S)-8-iso-PGF2α, or 8-Isoprostane), a thromboxane A2 receptor (TP) agonist, stable biomarker of oxidative stress, and risk marker of cardiovascular disease, has been proposed to aggravate atherogenesis in genetic mouse models of atherosclerotic vascular disease. Moreover, the TP plays an eminent role in the pathophysiology of endothelial dysfunction, atherogenesis, and cardiovascular disease. Yet it is unknown, how the TP expressed by vascular cells affects atherogenesis or 8-iso-PGF2α-related effects in mouse models of atherosclerosis. We studied Ldlr-deficient vascular endothelial-specific (EC) and vascular smooth muscle cell (VSMC)-specific TP knockout mice (TPECKO/Ldlr KO; TPVSMCKO/Ldlr KO) and corresponding wild-type littermates (TPWT/Ldlr KO). The mice were fed a Western-type diet for eight weeks and received either 8-iso-PGF2α or vehicle infusions via osmotic pumps. Subsequently, arterial blood pressure, atherosclerotic lesion formation, and lipid profiles were analyzed. We found that VSMC-, but not EC-specific TP deletion, attenuated atherogenesis without affecting blood pressure or plasma lipid profiles of the mice. In contrast to a previous report, 8-iso-PGF2α tended to reduce atherogenesis in TPWT/Ldlr KO and TPEC KO/Ldlr KO mice, again without significantly affecting blood pressure or lipid profiles of these mice. However, no further reduction in atherogenesis was observed in 8-iso-PGF2α-treated TPVSMC KO/Ldlr KO mice. Our work suggests that the TP expressed in VSMC but not the TP expressed in EC is involved in atherosclerotic lesion formation in Ldlr-deficient mice. Furthermore, we report an inhibitory effect of 8-iso-PGF2α on atherogenesis in this experimental atherosclerosis model, which paradoxically appears to be related to the presence of the TP in VSMC.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Aterosclerose/genética , Dinoprosta/análogos & derivados , F2-Isoprostanos , Camundongos , Camundongos Knockout , Fator de Crescimento Placentário , Receptores de Tromboxanos/genética , Tromboxano A2 , Tromboxanos
16.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163387

RESUMO

Cyclophilin A (CyPA) is widely expressed by all prokaryotic and eukaryotic cells. Upon activation, CyPA can be released into the extracellular space to engage in a variety of functions, such as interaction with the CD147 receptor, that contribute to the pathogenesis of cardiovascular diseases. CyPA was recently found to undergo acetylation at K82 and K125, two lysine residues conserved in most species, and these modifications are required for secretion of CyPA in response to cell activation in vascular smooth muscle cells. Herein we addressed whether acetylation at these sites is also required for the release of CyPA from platelets based on the potential for local delivery of CyPA that may exacerbate cardiovascular disease events. Western blot analyses confirmed the presence of CyPA in human and mouse platelets. Thrombin stimulation resulted in CyPA release from platelets; however, no acetylation was observed-neither in cell lysates nor in supernatants of both untreated and activated platelets, nor after immunoprecipitation of CyPA from platelets. Shotgun proteomics detected two CyPA peptide precursors in the recombinant protein, acetylated at K28, but again, no acetylation was found in CyPA derived from resting or stimulated platelets. Our findings suggest that acetylation of CyPA is not a major protein modification in platelets and that CyPA acetylation is not required for its secretion from platelets.


Assuntos
Plaquetas/metabolismo , Ciclofilina A/metabolismo , Ativação Plaquetária , Acetilação , Animais , Humanos , Lisina , Camundongos
17.
Cardiovasc Res ; 118(1): 37-52, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33537710

RESUMO

The interplay between the cardiovascular system, metabolism, and inflammation plays a central role in the pathophysiology of a wide spectrum of cardiovascular diseases, including heart failure. Here, we provide an overview of the fundamental aspects of the interrelation between inflammation and metabolism, ranging from the role of metabolism in immune cell function to the processes how inflammation modulates systemic and cardiac metabolism. Furthermore, we discuss how disruption of this immuno-metabolic interface is involved in the development and progression of cardiovascular disease, with a special focus on heart failure. Finally, we present new technologies and therapeutic approaches that have recently emerged and hold promise for the future of cardiovascular medicine.


Assuntos
Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Coração/fisiopatologia , Sistema Imunitário/metabolismo , Inflamação/metabolismo , Miocárdio/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , Coração/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/imunologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Sistema Imunitário/fisiopatologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/fisiopatologia , Mediadores da Inflamação , Miocárdio/imunologia , Transdução de Sinais
18.
Cardiovasc Res ; 118(14): 2932-2945, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34897380

RESUMO

AIMS: Atherosclerosis is a chronic inflammatory disease of the vessel wall controlled by local and systemic immune responses. The role of interleukin-23 receptor (IL-23R), expressed in adaptive immune cells (mainly T-helper 17 cells) and γδ T cells, in atherosclerosis is only incompletely understood. Here, we investigated the vascular cell types expressing IL-23R and addressed the function of IL-23R and γδ T cells in atherosclerosis. METHODS AND RESULTS: IL-23R+ cells were frequently found in the aortic root in contrast to the aorta in low-density lipoprotein receptor deficient IL-23R reporter mice (Ldlr-/-Il23rgfp/+), and mostly identified as γδ T cells that express IL-17 and GM-CSF. scRNA-seq confirmed γδ T cells as the main cell type expressing Il23r and Il17a in the aorta. Ldlr-/-Il23rgfp/gfp mice deficient in IL-23R showed a loss of IL-23R+ cells in the vasculature, and had reduced atherosclerotic lesion formation in the aortic root compared to Ldlr-/- controls after 6 weeks of high-fat diet feeding. In contrast, Ldlr-/-Tcrδ-/- mice lacking all γδ T cells displayed unaltered early atherosclerotic lesion formation compared to Ldlr-/- mice. In both HFD-fed Ldlr-/-Il23rgfp/gfp and Ldlr-/-Tcrδ-/- mice a reduction in the plaque necrotic core area was noted as well as an expansion of splenic regulatory T cells. In vitro, exposure of bone marrow-derived macrophages to both IL-17A and GM-CSF induced cell necrosis, and necroptotic RIP3K and MLKL expression, as well as inflammatory mediators. CONCLUSIONS: IL-23R+ γδ T cells are predominantly found in the aortic root rather than the aorta and promote early atherosclerotic lesion formation, plaque necrosis, and inflammation at this site. Targeting IL-23R may thus be explored as a therapeutic approach to mitigate atherosclerotic lesion development.


Assuntos
Aterosclerose , Placa Aterosclerótica , Receptores de Interleucina , Animais , Camundongos , Aterosclerose/metabolismo , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose/metabolismo , Placa Aterosclerótica/metabolismo , Receptores de LDL , Células Th17 , Receptores de Interleucina/genética
19.
Biomedicines ; 9(12)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34944672

RESUMO

Growth, ageing and atherosclerotic plaque development alter the biomechanical forces acting on the vessel wall. However, monitoring the detailed local changes in wall shear stress (WSS) at distinct sites of the murine aortic arch over time has been challenging. Here, we studied the temporal and spatial changes in flow, WSS, oscillatory shear index (OSI) and elastic properties of healthy wildtype (WT, n = 5) and atherosclerotic apolipoprotein E-deficient (Apoe-/-, n = 6) mice during ageing and atherosclerosis using high-resolution 4D flow magnetic resonance imaging (MRI). Spatially resolved 2D projection maps of WSS and OSI of the complete aortic arch were generated, allowing the pixel-wise statistical analysis of inter- and intragroup hemodynamic changes over time and local correlations between WSS, pulse wave velocity (PWV), plaque and vessel wall characteristics. The study revealed converse differences of local hemodynamic profiles in healthy WT and atherosclerotic Apoe-/- mice, and we identified the circumferential WSS as potential marker of plaque size and composition in advanced atherosclerosis and the radial strain as a potential marker for vascular elasticity. Two-dimensional (2D) projection maps of WSS and OSI, including statistical analysis provide a powerful tool to monitor local aortic hemodynamics during ageing and atherosclerosis. The correlation of spatially resolved hemodynamics and plaque characteristics could significantly improve our understanding of the impact of hemodynamics on atherosclerosis, which may be key to understand plaque progression towards vulnerability.

20.
Cardiovasc Res ; 117(13): 2537-2543, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34343272

RESUMO

Immune cells in atherosclerosis include T, B, natural killer (NK) and NKT cells, macrophages, monocytes, dendritic cells (DCs), neutrophils, and mast cells. Advances in single-cell RNA sequencing (sRNA-Seq) have refined our understanding of immune cell subsets. Four recent studies have used scRNA-Seq of immune cells in human atherosclerotic lesions and peripheral blood mononuclear cells (PBMCs), some including cell surface phenotypes revealed by oligonucleotide-tagged antibodies, which confirmed known and identified new immune cell subsets and identified genes significantly up-regulated in PBMCs from HIV+ subjects with atherosclerosis compared to PBMCs from matched HIV+ subjects without atherosclerosis. The ability of scRNA-Seq to identify cell types is greatly augmented by adding cell surface phenotype using antibody sequencing. In this review, we summarize the latest data obtained by scRNA-Seq on plaques and human PBMCs in human subjects with atherosclerosis.


Assuntos
Aterosclerose/genética , Perfilação da Expressão Gênica , Heterogeneidade Genética , Sistema Imunitário/imunologia , Leucócitos/imunologia , Células Mieloides/imunologia , Placa Aterosclerótica , RNA-Seq , Análise de Célula Única , Transcriptoma , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Imunofenotipagem , Leucócitos/metabolismo , Leucócitos/patologia , Camundongos , Células Mieloides/metabolismo , Células Mieloides/patologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...