Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 164(4): 646-658, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29469690

RESUMO

Translation initiation in 50-70 % of transcripts in Escherichia coli requires base pairing between the Shine-Dalgarno (SD) motif in the mRNA and the anti-SD motif at the 3' end of the 16S rRNA. However, 30-50 % of E. coli transcripts are non-canonical and are not preceded by an SD motif. The 5' ends of 44 E. coli transcripts were determined, all of which contained a 5'-UTR (no leaderless transcripts), but only a minority contained an SD motif. The 5'-UTR lengths were compared with those listed in RegulonDB and reported in previous publications, and the identities and differences were obtained in all possible combinations. We aimed to quantify the translational efficiencies of non-canonical 5'-UTRs using GusA reporter gene assays and Northern blot analyses. Ten non-canonical 5'-UTRs and two control 5'-UTRs with an SD motif were cloned upstream of the gusA gene. The translational efficiencies were quantified under five different conditions (different growth rates via two different temperatures and two different carbon sources, and heat shock). The translational efficiencies of the non-canonical 5'-UTRs varied widely, from 5 to 384 % of the positive control. In addition, the non-canonical transcripts did not exhibit a common regulatory pattern with changing environmental parameters. No correlation could be observed between the translational efficiencies of the non-canonical 5'-UTRs and their lengths, sequences, GC content, or predicted secondary structures. The introduction of an SD motif enhanced the translational efficiency of a poorly translated non-canonical transcript, while the efficiency of a well-translated non-canonical transcript remained unchanged. Taken together, the mechanisms of translation initiation at non-canonical transcripts in E. coli still need to be elucidated.


Assuntos
Escherichia coli/genética , Motivos de Nucleotídeos/fisiologia , Iniciação Traducional da Cadeia Peptídica/genética , RNA Bacteriano/genética , RNA Mensageiro/genética , Regiões 5' não Traduzidas/genética , Proteínas de Bactérias/biossíntese , Genes Reporter , Motivos de Nucleotídeos/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo
2.
FEMS Microbiol Lett ; 365(4)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29315386

RESUMO

Bacteria were long assumed to be monoploid, maintaining one copy of a circular chromosome. In recent years it became obvious that the majority of species in several phylogenetic groups of prokaryotes are oligoploid or polyploid. The present study aimed at investigating the ploidy in Gram-positive aerobic endospore-forming bacteria. First, the numbers of origins and termini of the widely used laboratory strain Bacillus subtilis 168 were quantified. The strain was found to be mero-oligoploid in exponential phase (5.9 origins, 1.2 termini) and to down-regulate the number of origins in stationary phase. After inoculation of fresh medium with stationary-phase cells the onset of replication preceded the onset of mass increase. For the analysis of the ploidy in fresh isolates, three strains were isolated from soil, which were found to belong to the genera of Bacillus and Paenibacillus. All three strains were found to be mero-oligoploid in exponential phase and exhibit a growth phase-dependent down-regulation of the ploidy level in stationary phase. Taken together, these results indicate that mero-oligoploidy as well as growth phase-dependent copy number regulation might be widespread in and typical for Bacillus and related genera.


Assuntos
Bacillus/genética , Paenibacillus/genética , Ploidias , Bacillus/classificação , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Dosagem de Genes , Paenibacillus/classificação , Paenibacillus/crescimento & desenvolvimento , Paenibacillus/isolamento & purificação , Filogenia , Microbiologia do Solo
3.
PLoS One ; 12(1): e0168143, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28081129

RESUMO

It is long known that Kasugamycin inhibits translation of canonical transcripts containing a 5'-UTR with a Shine Dalgarno (SD) motif, but not that of leaderless transcripts. To gain a global overview of the influence of Kasugamycin on translation efficiencies, the changes of the translatome of Escherichia coli induced by a 10 minutes Kasugamycin treatment were quantified. The effect of Kasugamycin differed widely, 102 transcripts were at least twofold more sensitive to Kasugamycin than average, and 137 transcripts were at least twofold more resistant, and there was a more than 100-fold difference between the most resistant and the most sensitive transcript. The 5'-ends of 19 transcripts were determined from treated and untreated cultures, but Kasugamycin resistance did neither correlate with the presence or absence of a SD motif, nor with differences in 5'-UTR lengths or GC content. RNA Structure Logos were generated for the 102 Kasugamycin-sensitive and for the 137 resistant transcripts. For both groups a short Shine Dalgarno (SD) motif was retrieved, but no specific motifs associated with resistance or sensitivity could be found. Notably, this was also true for the region -3 to -1 upstream of the start codon and the presence of an extended SD motif, which had been proposed to result in Kasugamycin resistance. Comparison of the translatome results with the database RegulonDB showed that the transcript with the highest resistance was leaderless, but no further leaderless transcripts were among the resistant transcripts. Unexpectedly, it was found that translational coupling might be a novel feature that is associated with Kasugamycin resistance. Taken together, Kasugamycin has a profound effect on translational efficiencies of E. coli transcripts, but the mechanism of action is different than previously described.


Assuntos
Regiões 5' não Traduzidas , Aminoglicosídeos/farmacologia , Composição de Bases , Proteínas de Escherichia coli/biossíntese , Escherichia coli/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Bases de Dados de Proteínas , Escherichia coli/genética , Proteínas de Escherichia coli/genética
4.
Microbiology (Reading) ; 162(5): 730-739, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26919857

RESUMO

Synechocystis sp. PCC 6803 is a cyanobacterial model strain widely used to study many biological processes and is also applied for the production of biopolymers. Recently, it was reported that two of its substrains are highly polyploid. To test whether this can be generalized to the whole strain, six substrains were selected and their ploidy levels quantified. The ploidy levels of all substrains were highly growth phase regulated and the copy number was on average about 20 at an OD750 of 0.1 and about 4 at an OD750 of 2.5. In addition to growth phase, external conditions were found to influence the ploidy level, i.e. the copy number was elevated at lower light intensity and at higher phosphate concentrations (53 and 35 copies, respectively). In the absence of external phosphate, considerable growth was observed, although growth rate and growth yield were much lower than in the presence of either orthophosphate or genomic DNA as external source of phosphate. A rapid reduction in genome copy number was observed during growth in the absence of phosphate, indicating that replication ceased and genomes were distributed to the daughter cells. During prolonged incubation of stationary-phase cultures in the absence of phosphate, the cells eventually became monoploid. Taking the data together, the ploidy level of Synechocystis sp. PCC 6803 is extremely variable and is influenced by both growth phase and physical and chemical environmental parameters.


Assuntos
Variações do Número de Cópias de DNA/genética , Genoma Bacteriano/genética , Fosfatos/metabolismo , Poliploidia , Synechocystis/genética , Synechocystis/classificação , Synechocystis/crescimento & desenvolvimento
5.
PLoS One ; 9(10): e110533, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25338080

RESUMO

Live bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes. Here, cultivable halophilic microbes were isolated from a surface sterilized middle-late Eocene (38-41 million years ago) rock salt sample, drilled from the depth of 800 m at Yunying salt mine, China. Eight unique isolates were obtained, which represented two haloarchaeal genera, Halobacterium and Halolamina. We used real-time PCR to show that our isolates are polyploid, with genome copy numbers of 11-14 genomes per cell in exponential growth phase. The ploidy level was slightly downregulated in stationary growth phase, but the cells still had an average genome copy number of 6-8. The polyploidy of halophilic archaea living in ancient rock salt might be a factor explaining how these organisms are able to overcome the challenge of prolonged survival during their entombment.


Assuntos
DNA Arqueal/genética , Genoma Arqueal , Halobacteriaceae/genética , Poliploidia , RNA Ribossômico 16S/genética , Sequência de Bases , Evolução Biológica , China , Sedimentos Geológicos/microbiologia , Halobacteriaceae/classificação , Halobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Sais
6.
Front Microbiol ; 5: 274, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24982654

RESUMO

The investigated haloarchaeal species, Halobacterium salinarum, Haloferax mediterranei, and H. volcanii, have all been shown to be polyploid. They contain several replicons that have independent copy number regulation, and most have a higher copy number during exponential growth phase than in stationary phase. The possible evolutionary advantages of polyploidy for haloarchaea, most of which have experimental support for at least one species, are discussed. These advantages include a low mutation rate and high resistance toward X-ray irradiation and desiccation, which depend on homologous recombination. For H. volcanii, it has been shown that gene conversion operates in the absence of selection, which leads to the equalization of genome copies. On the other hand, selective forces might lead to heterozygous cells, which have been verified in the laboratory. Additional advantages of polyploidy are survival over geological times in halite deposits as well as at extreme conditions on earth and at simulated Mars conditions. Recently, it was found that H. volcanii uses genomic DNA as genetic material and as a storage polymer for phosphate. In the absence of phosphate, H. volcanii dramatically decreases its genome copy number, thereby enabling cell multiplication, but diminishing the genetic advantages of polyploidy. Stable storage of phosphate is proposed as an alternative driving force for the emergence of DNA in early evolution. Several additional potential advantages of polyploidy are discussed that have not been addressed experimentally for haloarchaea. An outlook summarizes selected current trends and possible future developments.

7.
PLoS One ; 9(4): e94819, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24733558

RESUMO

Haloferax volcanii uses extracellular DNA as a source for carbon, nitrogen, and phosphorous. However, it can also grow to a limited extend in the absence of added phosphorous, indicating that it contains an intracellular phosphate storage molecule. As Hfx. volcanii is polyploid, it was investigated whether DNA might be used as storage polymer, in addition to its role as genetic material. It could be verified that during phosphate starvation cells multiply by distributing as well as by degrading their chromosomes. In contrast, the number of ribosomes stayed constant, revealing that ribosomes are distributed to descendant cells, but not degraded. These results suggest that the phosphate of phosphate-containing biomolecules (other than DNA and RNA) originates from that stored in DNA, not in rRNA. Adding phosphate to chromosome depleted cells rapidly restores polyploidy. Quantification of desiccation survival of cells with different ploidy levels showed that under phosphate starvation Hfx. volcanii diminishes genetic advantages of polyploidy in favor of cell multiplication. The consequences of the usage of genomic DNA as phosphate storage polymer are discussed as well as the hypothesis that DNA might have initially evolved in evolution as a storage polymer, and the various genetic benefits evolved later.


Assuntos
Biopolímeros/metabolismo , DNA Arqueal/metabolismo , Haloferax volcanii/crescimento & desenvolvimento , Haloferax volcanii/metabolismo , Viabilidade Microbiana , Fosfatos/metabolismo , Poliploidia , Cromossomos de Archaea/genética , Dessecação , Genoma Arqueal/genética , Haloferax volcanii/efeitos dos fármacos , Haloferax volcanii/genética , Espaço Intracelular/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Peso Molecular , Nitrogênio/metabolismo , Fosfatos/farmacologia , Fósforo/metabolismo , RNA Ribossômico/metabolismo
8.
FEMS Microbiol Lett ; 322(2): 123-30, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21692831

RESUMO

A method to grow the halophilic archaeon Haloferax volcanii in microtiter plates has been optimized and now allows the parallel generation of very reproducible growth curves. The doubling time in a synthetic medium with glucose is around 6 h. The method was used to optimize glucose and casamino acid concentrations, to clarify carbon source usage and to analyze vitamin dependence. The characterization of osmotolerance revealed that after a lag phase of 24 h, H. volcanii is able to grow at salt concentrations as low as 0.7 M NaCl, much lower than the 1.4 M NaCl described as the lowest concentration until now. The application of oxidative stresses showed that H. volcanii exhibits a reaction to paraquat that is delayed by about 10 h. Surprisingly, only one of two amino acid auxotrophic mutants could be fully supplemented by the addition of the respective amino acid. Analysis of eight sRNA gene deletion mutants exemplified that the method can be applied for bona fide phenotyping of mutant collections. This method for the parallel analysis of many cultures contributes towards making H. volcanii an archaeal model species for functional genomic approaches.


Assuntos
Haloferax volcanii/crescimento & desenvolvimento , Haloferax volcanii/genética , Mutação/genética , Aerobiose/fisiologia , Carbono/metabolismo , Regulação da Expressão Gênica em Archaea , Haloferax volcanii/metabolismo , Pressão Osmótica , Estresse Oxidativo , Fenótipo , RNA Arqueal/genética , Vitaminas/metabolismo
9.
PLoS One ; 6(1): e16392, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21305010

RESUMO

Bacteria are generally assumed to be monoploid (haploid). This assumption is mainly based on generalization of the results obtained with the most intensely studied model bacterium, Escherichia coli (a gamma-proteobacterium), which is monoploid during very slow growth. However, several species of proteobacteria are oligo- or polyploid, respectively. To get a better overview of the distribution of ploidy levels, genome copy numbers were quantified in four species of three different groups of proteobacteria. A recently developed Real Time PCR approach, which had been used to determine the ploidy levels of halophilic archaea, was optimized for the quantification of genome copy numbers of bacteria. Slow-growing (doubling time 103 minutes) and fast-growing (doubling time 25 minutes) E. coli cultures were used as a positive control. The copy numbers of the origin and terminus region of the chromosome were determined and the results were in excellent agreement with published data. The approach was also used to determine the ploidy levels of Caulobacter crescentus (an alpha-proteobacterium) and Wolinella succinogenes (an epsilon-proteobacterium), both of which are monoploid. In contrast, Pseudomonas putida (a gamma-proteobacterium) contains 20 genome copies and is thus polyploid. A survey of the proteobacteria with experimentally-determined genome copy numbers revealed that only three to four of 11 species are monoploid and thus monoploidy is not typical for proteobacteria. The ploidy level is not conserved within the groups of proteobacteria, and there are no obvious correlations between the ploidy levels with other parameters like genome size, optimal growth temperature or mode of life.


Assuntos
Ploidias , Proteobactérias/genética , Dosagem de Genes , Genoma Bacteriano , Proteobactérias/crescimento & desenvolvimento , Especificidade da Espécie
10.
Mol Microbiol ; 80(3): 666-77, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21338422

RESUMO

Haloferax volcanii is highly polyploid and contains about 20 copies of the major chromosome. A heterozygous strain was constructed that contained two different types of genomes: the leuB locus contained either the wild-type leuB gene or a leuB:trpA gene introduced by gene replacement. As the trpA locus is devoid of the wild-type trpA gene, growth in the absence of both amino acids is only possible when both types of genomes are simultaneously present, exemplifying gene redundancy and the potential to form heterozygous cells as one possible evolutionary advantage of polyploidy. The heterozygous strain was grown (i) in the presence of tryptophan, selecting for the presence of leuB, (ii) in the presence of leucine selecting for leuB:trpA and (iii) in the absence of selection. Both types of genomes were quantified with real-time PCR. The first condition led to a complete loss of leuB:trpA-containing genomes, while under the second condition leuB-containing genomes were lost. Also in the absence of selection gene conversion led to a fast equalization of genomes and resulted in homozygous leuB-containing cells. Gene conversion leading to genome equalization can explain the escape from 'Muller's ratchet' as well as the ease of mutant construction using polyploid haloarchaea.


Assuntos
Conversão Gênica , Genoma Arqueal , Haloferax volcanii/genética , Poliploidia , Meios de Cultura/química , Técnicas de Inativação de Genes , Haloferax volcanii/crescimento & desenvolvimento , Leucina/genética , Leucina/metabolismo , Mutagênese , Seleção Genética , Triptofano/genética , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...