Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 19(30): 305501, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-21828762

RESUMO

Recently, we investigated the adsorption of octachloro zinc phthalocyanine (ZnPcCl(8)) on Ag(111) by scanning tunneling microscopy. Compared to the standard phthalocyanine, halogenated phthalocyanine molecules show a much more complex binding behavior, which results in the formation of three different structural phases. These phases follow from the ordering process with the formation of 8, 4 and 0 intermolecular hydrogen-halogen bonds (Abel et al 2006 ChemPhysChem 7 82). In the present work we investigate these phases by Kelvin probe force microscopy in order to quantitatively deduce the electric interface barrier of the first monolayer. Our measurements reveal that the binding behavior does not only affect the structural ordering but also the interface dipole formation, which leads to different work functions. The fact that we observe interface barriers of opposite signs between ordered and disordered molecular layers underlines the importance of exactly knowing the molecular arrangement at the interface when assembling organic molecule devices.

2.
Nanotechnology ; 17(6): 1568-73, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26558560

RESUMO

Ordered growth of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) on Ag(111) partially covered by one or two monolayers of KBr was investigated by non-contact AFM with molecular resolution. Different adsorption patterns are found on the pure substrate, the one covered by a single monolayer, and the one covered by two monolayers KBr. Simulations with an extended Ising-type model reproduce these experimental patterns very well. The adsorbate-adsorbate and the adsorbate-substrate interaction parameters obtained from the simulation are discussed with respect to the interactions at the Ag(111)|KBr interface. As a result, alkali halide covered metals can be used for tuning the interactions and designing adsorption systems, which opens up new possibilities in the control of self-assembled nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...