Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 444-453, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38109219

RESUMO

Industrial catalysts are complex materials systems operating in harsh environments. The active parts of the catalysts are nanoparticles that expose different facets with different surface orientations at which the catalytic reactions occur. However, these facets are close to impossible to study in detail under industrially relevant operating conditions. Instead, simpler model systems, such as single crystals with a well-defined surface orientation, have been successfully used to study gas-surface interactions such as adsorption and desorption, surface oxidation, and oxidation/reduction reactions. To more closely mimic the many facets exhibited by nanoparticles and thereby close the so-called materials gap, there has also been a recent move toward using polycrystalline surfaces and curved crystals. However, these studies are limited either by the pressure or spatial resolution at realistic pressures or by the number of surfaces studied simultaneously. In this work, we demonstrate the use of reflectance microscopy to study a vast number of catalytically active surfaces simultaneously under realistic and identical reaction conditions. As a proof of concept, we have conducted an operando experiment to study CO oxidation over a Pd polycrystal, where the polycrystalline surface acts as a collection of many single-crystal surfaces. Finally, we visualized the resulting data by plotting the reflectivity as a function of surface orientation. We think the techniques and visualization methods introduced in this work will be key toward bridging the materials gap in catalysis.

2.
ACS Appl Mater Interfaces ; 15(38): 45367-45377, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37704018

RESUMO

In2O3-based catalysts have shown high activity and selectivity for CO2 hydrogenation to methanol; however, the origin of the high performance of In2O3 is still unclear. To elucidate the initial steps of CO2 hydrogenation over In2O3, we have combined X-ray photoelectron spectroscopy and density functional theory calculations to study the adsorption of CO2 on the In2O3(111) crystalline surface with different terminations, namely, the stoichiometric, reduced, and hydroxylated surface. The combined approach confirms that the reduction of the surface results in the formation of In adatoms and that water dissociates on the surface at room temperature. A comparison of the experimental spectra and the computed core-level shifts (using methanol and formic acid as benchmark molecules) suggests that CO2 adsorbs as a carbonate on all three surface terminations. We find that the adsorption of CO2 is hindered by hydroxyl groups on the hydroxylated surface.

3.
J Phys Chem Lett ; 14(38): 8493-8499, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37721973

RESUMO

The catalytic oxidation of CO and CH4 can be strongly influenced by the structures of oxide phases that form on metallic catalysts during reaction. Here, we show that an epitaxial PdO(100) structure forms at temperatures above 600 K during the oxidation of Pd(100) by gaseous O atoms as well as exposure to O2-rich mixtures at millibar partial pressures. The oxidation of Pd(100) by gaseous O atoms preferentially generates an epitaxial, multilayer PdO(101) structure at 500 K, but initiating Pd(100) oxidation above 600 K causes an epitaxial PdO(100) structure to grow concurrently with PdO(101) and produces a thicker and rougher oxide. We present evidence that this change in the oxidation behavior is caused by a temperature-induced change in the stability of small PdO domains that initiate oxidation. Our discovery of the epitaxial PdO(100) structure may be significant for developing relationships among oxide structure, catalytic activity, and reaction conditions for applications of oxidation catalysis.

4.
J Am Chem Soc ; 144(33): 15363-15371, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960901

RESUMO

Curved crystals are a simple but powerful approach to bridge the gap between single crystal surfaces and nanoparticle catalysts, by allowing a rational assessment of the role of active step sites in gas-surface reactions. Using a curved Rh(111) crystal, here, we investigate the effect of A-type (square geometry) and B-type (triangular geometry) atomic packing of steps on the catalytic CO oxidation on Rh at millibar pressures. Imaging the crystal during reaction ignition with laser-induced CO2 fluorescence demonstrates a two-step process, where B-steps ignite at lower temperature than A-steps. Such fundamental dissimilarity is explained in ambient pressure X-ray photoemission (AP-XPS) experiments, which reveal partial CO desorption and oxygen buildup only at B-steps. AP-XPS also proves that A-B step asymmetries extend to the active stage: at A-steps, low-active O-Rh-O trilayers buildup immediately after ignition, while highly active chemisorbed O is the dominant species on B-type steps. We conclude that B-steps are more efficient than A-steps for the CO oxidation.

5.
J Phys Chem Lett ; 12(39): 9508-9515, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34559547

RESUMO

Steps at metal surfaces may influence energetics and kinetics of catalytic reactions in unexpected ways. Here, we report a significant reduction of the CO saturation coverage in Pd vicinal surfaces, which in turn is relevant for the light-off of the CO oxidation reaction. The study is based on a systematic investigation of CO adsorption on vicinal Pd(111) surfaces making use of a curved Pd crystal. A combined X-ray Photoelectron Spectroscopy and DFT analysis allows us to demonstrate that an entire row of atomic sites under Pd steps remains free of CO upon saturation at 300 K, leading to a step-density-dependent reduction of CO coverage that correlates with the observed decrease of the light-off temperature during CO oxidation in vicinal Pd surfaces.

7.
ACS Appl Mater Interfaces ; 13(16): 19530-19540, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33870682

RESUMO

We have developed a microscope with a spatial resolution of 5 µm, which can be used to image the two-dimensional surface optical reflectance (2D-SOR) of polycrystalline samples in operando conditions. Within the field of surface science, operando tools that give information about the surface structure or chemistry of a sample under realistic experimental conditions have proven to be very valuable to understand the intrinsic reaction mechanisms in thermal catalysis, electrocatalysis, and corrosion science. To study heterogeneous surfaces in situ, the experimental technique must both have spatial resolution and be able to probe through gas or electrolyte. Traditional electron-based surface science techniques are difficult to use under high gas pressure conditions or in an electrolyte due to the short mean free path of electrons. Since it uses visible light, SOR can easily be used under high gas pressure conditions and in the presence of an electrolyte. In this work, we use SOR in combination with a light microscope to gain information about the surface under realistic experimental conditions. We demonstrate this by studying the different grains of three polycrystalline samples: Pd during CO oxidation, Au in electrocatalysis, and duplex stainless steel in corrosion. Optical light-based techniques such as SOR could prove to be a good alternative or addition to more complicated techniques in improving our understanding of complex polycrystalline surfaces with operando measurements.

8.
Angew Chem Int Ed Engl ; 59(45): 20037-20043, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32701180

RESUMO

The catalytic oxidation of CO on transition metals, such as Pt, is commonly viewed as a sharp transition from the CO-inhibited surface to the active metal, covered with O. However, we find that minor amounts of O are present in the CO-poisoned layer that explain why, surprisingly, CO desorbs at stepped and flat Pt crystal planes at once, regardless of the reaction conditions. Using near-ambient pressure X-ray photoemission and a curved Pt(111) crystal we probe the chemical composition at surfaces with variable step density during the CO oxidation reaction. Analysis of C and O core levels across the curved crystal reveals that, right before light-off, subsurface O builds up within (111) terraces. This is key to trigger the simultaneous ignition of the catalytic reaction at different Pt surfaces: a CO-Pt-O complex is formed that equals the CO chemisorption energy at terraces and steps, leading to the abrupt desorption of poisoning CO from all crystal facets at the same temperature.

9.
J Synchrotron Radiat ; 25(Pt 5): 1389-1394, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30179177

RESUMO

High-energy surface X-ray diffraction (HESXRD) provides surface structural information with high temporal resolution, facilitating the understanding of the surface dynamics and structure of the active phase of catalytic surfaces. The surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface, and the catalytic activity of the sample itself may affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, planar laser-induced fluorescence (PLIF) and HESXRD have been combined during the oxidation of CO over a Pd(100) crystal. PLIF complements the structural studies with an instantaneous two-dimensional image of the CO2 gas phase in the vicinity of the active model catalyst. Here the combined HESXRD and PLIF operando measurements of CO oxidation over Pd(100) are presented, allowing for an improved assignment of the correlation between sample structure and the CO2 distribution above the sample surface with sub-second time resolution.

10.
Acc Chem Res ; 50(9): 2326-2333, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28880530

RESUMO

Motivated mainly by catalysis, gas-surface interaction between single crystal surfaces and molecules has been studied for decades. Most of these studies have been performed in well-controlled environments and have been instrumental for the present day understanding of catalysis, providing information on surface structures, adsorption sites, and adsorption and desorption energies relevant for catalysis. However, the approach has been criticized for being too far from a catalyst operating under industrial conditions at high temperatures and pressures. To this end, a significant amount of effort over the years has been used to develop methods to investigate catalysts at more realistic conditions under operating conditions. One result from this effort is a vivid and sometimes heated discussion concerning the active phase for the seemingly simple CO oxidation reaction over the Pt-group metals in the literature. In recent years, we have explored the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures and temperatures. In this contribution, results from catalytic CO oxidation over a Pd(100) single crystal surface using Near Ambient Pressure X-ray Photo emission Spectroscopy (NAPXPS), Planar Laser-Induced Fluorescence (PLIF), and High Energy Surface X-ray Diffraction (HESXRD) are presented, and the strengths and weaknesses of the experimental techniques are discussed. Armed with structural knowledge from ultrahigh vacuum experiments, the presence of adsorbed molecules and gas-phase induced surface structures can be identified and related to changes in the reactivity or to reaction induced gas-flow limitations. In particular, the application of PLIF to catalysis allows one to visualize how the catalyst itself changes the gas composition close to the model catalyst surface upon ignition, and relate this to the observed surface structures. The effect obscures a straightforward relation between the active phase and the activity, since in the case of CO oxidation, the gas-phase close to the model catalyst surface is shown to be significantly more oxidizing than far away from the catalyst. We show that surface structural knowledge from UHV experiments and the composition of the gas phase close to the catalyst surface are crucial to understand structure-function relationships at semirealistic conditions. In the particular case of Pd, we argue that the surface structure of the PdO(101) has a significant influence on the activity, due to the presence of Coordinatively Unsaturated Sites (CUS) Pd atoms, similar to undercoordinated Ru and Ir atoms found for RuO2(110) and IrO2(110), respectively.

11.
J Phys Condens Matter ; 28(45): 453002, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27619414

RESUMO

In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be applied to a large number of molecules thanks to the technical development of lasers and detectors over the last decades, and is a complementary and visual alternative to traditional MS to be used in environments difficult to asses with MS. In this article we will review general considerations when performing PLIF experiments, our experimental set-up for PLIF and discuss relevant examples of PLIF applied to catalysis.

12.
Opt Express ; 23(23): 30414-20, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26698520

RESUMO

Planar infrared visualization of species in flames is challenging due to the severe thermal radiation background and relatively weak fluorescence quantum yields from ro-vibration transitions. In this express, we report imaging of molecular species in a flame via an absorption-based coherent optical method, namely infrared polarization spectroscopy (IRPS). Single-shot, planar imaging of hydrogen fluoride (HF) has been achieved in a premixed CH(4)/O(2) Bunsen flame, being seeded with a small amount of SF(6). The HF molecule was excited through a rovibrational transition at around 2.5 µm, which belongs to the fundamental vibration band. High spatial resolution was guaranteed using an orthorgonal pump-probe geometry, and an effective suppression of thermal background emission was achieved owing to the coherent nature of the demonstrated two-dimensional IRPS. Other advantages, e.g. high temporal resolution and species-specificity, are also features of this laser-based technique, which make it suitable for imaging of non-fluorescent but infrared active gaseous molecules in harsh environments.

13.
Nat Commun ; 6: 7076, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25953006

RESUMO

Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 µm) and temporal (15 µs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes.

14.
ACS Catal ; 5(4): 2028-2034, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25893136

RESUMO

The gas composition surrounding a catalytic sample has direct impact on its surface structure, which is essential when in situ investigations of model catalysts are performed. Herein a study of the gas phase close to a Pd(110) surface during CO oxidation under semirealistic conditions is presented. Images of the gas phase, provided by planar laser-induced fluorescence, clearly visualize the formation of a boundary layer with a significantly lower CO partial pressure close to the catalytically active surface, in comparison to the overall concentration as detected by mass spectrometry. The CO partial pressure variation within the boundary layer will have a profound effect on the catalysts' surface structure and function and needs to be taken into consideration for in situ model catalysis studies.

15.
Appl Spectrosc ; 68(11): 1266-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25279538

RESUMO

The use of an alexandrite laser for laser-induced fluorescence (LIF) spectroscopy and imaging of molecular oxygen in thermally excited vibrational states is demonstrated. The laser radiation after the third harmonic generation was used to excite the B-X (0-7) band at 257 nm in the Schumann-Runge system of oxygen. LIF emission was detected between 270 and 380 nm, revealing distinct bands of the transitions from B(0) to highly excited vibrational states in the electronic ground state, X (v > 7). At higher spectral resolution, these bands reveal the common P- and R-branch line splitting. Eventually, the proposed LIF approach was used for single-shot imaging of the two-dimensional distribution of hot oxygen molecules in flames.

16.
Phys Chem Chem Phys ; 15(26): 10753-60, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23689671

RESUMO

Hydrocarbon autoignition has long been an area of intense fundamental chemical interest, and is a key technological process for emerging clean and efficient combustion strategies. Carbon-centered radicals containing an -OOH group, commonly denoted ˙QOOH radicals, are produced by isomerization of the alkylperoxy radicals that are formed in the first stages of oxidation. These ˙QOOH radicals are among the most critical species for modeling autoignition, as their reactions with O2 are responsible for chain branching below 1000 K. Despite their importance, no ˙QOOH radicals have ever been observed by any means, and only computational and indirect experimental evidence has been available on their reactivity. Here, we directly produce a ˙QOOH radical, 2-hydroperoxy-2-methylprop-1-yl, and experimentally determine rate coefficients for its unimolecular decomposition and its association reaction with O2. The results are supported by high-level theoretical kinetics calculations. Our experimental strategy opens up a new avenue to study the chemistry of ˙QOOH radicals in isolation.

17.
Appl Spectrosc ; 62(7): 778-83, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18935828

RESUMO

Two-dimensional temperature measurements using filtered Rayleigh scattering (FRS) have been demonstrated. A tunable single-longitudinal-mode alexandrite laser was employed to provide the tunable narrow-line-width ultraviolet laser beam at 254 nm. Isotopic-enhanced mercury was utilized as an ultraviolet atomic filter. The strong absorption of the filter enabled effective suppression of elastic background. The transmission curve of the mercury filter was characterized by combining experimental measurements and proper modeling. The Rayleigh-Brillouin spectral profiles were calculated employing the S6 model. Quantitative interpretations of two-dimensional FRS signals were performed in both premixed and diffusion flames. The temperature values obtained were in good agreement with adiabatic calculations and earlier measurements.

18.
Appl Opt ; 46(19): 3928-36, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17571129

RESUMO

The diagnostic techniques for simultaneous velocity and relative OH distribution, simultaneous temperature and relative OH distribution, and three component velocity mapping are described. The data extracted from the measurements include statistical moments for inflow fluid dynamics, temperature, conditional velocities, and scalar flux. The work is a first step in the development of a detailed large eddy simulation (LES) validation database for a turbulent, premixed flame. The low-swirl burner used in this investigation has many of the necessary attributes for LES model validation, including a simplified interior geometry; it operates well into the thin reaction zone for turbulent premixed flames, and flame stabilization is based entirely on the flow field and not on hardware or pilot flames.


Assuntos
Radical Hidroxila/química , Óxido Nítrico/química , Monitoramento Ambiental/métodos , Desenho de Equipamento , Lasers , Óptica e Fotônica , Projetos de Pesquisa , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...