Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 1: 993-1003, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29531851

RESUMO

The identification and molecular profiling of early metastases remains a major challenge in cancer diagnostics and therapy. Most in vivo imaging methods fail to detect small cancerous lesions, a problem that is compounded by the distinct physical and biological barriers associated with different metastatic niches. Here, we show that intravenously injected rare-earth-doped albumin-encapsulated nanoparticles emitting short-wave infrared light (SWIR) can detect targeted metastatic lesions in vivo, allowing for the longitudinal tracking of multi-organ metastases. In a murine model of basal human breast cancer, the nanoprobes enabled whole-body SWIR detection of adrenal gland microlesions and bone lesions that were undetectable via contrast-enhanced magnetic resonance imaging (CE-MRI) as early as, respectively, three weeks and five weeks post-inoculation. Whole-body SWIR imaging of nanoprobes functionalized to differentially target distinct metastatic sites and administered to a biomimetic murine model of human breast cancer resolved multi-organ metastases that showed varied molecular profiles at the lungs, adrenal glands and bones. Real-time surveillance of lesions in multiple organs should facilitate pre-therapy and post-therapy monitoring in preclinical settings.

2.
J Biomed Opt ; 20(11): 110506, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26603495

RESUMO

Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4 : Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic.


Assuntos
Linhagem Celular Tumoral/química , Aumento da Imagem/instrumentação , Microscopia de Fluorescência/instrumentação , Imagem Molecular/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Linhagem Celular Tumoral/ultraestrutura , Meios de Contraste/química , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Metais Terras Raras , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Small ; 11(47): 6347-57, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26514367

RESUMO

Realizing the promise of precision medicine in cancer therapy depends on identifying and tracking cancerous growths to maximize treatment options and improve patient outcomes. This goal of early detection remains unfulfilled by current clinical imaging techniques that fail to detect lesions due to their small size and suborgan localization. With proper probes, optical imaging techniques can overcome this by identifying the molecular phenotype of tumors at both macroscopic and microscopic scales. In this study, the first use of nanophotonic short wave infrared technology is proposed to molecularly phenotype small lesions for more sensitive detection. Here, human serum albumin encapsulated rare-earth nanoparticles (ReANCs) with ligands for targeted lesion imaging are designed. AMD3100, an antagonist to CXCR4 (a classic marker of cancer metastasis) is adsorbed onto ReANCs to form functionalized ReANCs (fReANCs). fReANCs are able to preferentially accumulate in receptor positive lesions when injected intraperitoneally in a subcutaneous tumor model. fReANCs can also target subtissue microlesions at a maximum depth of 10.5 mm in a lung metastatic model of breast cancer. Internal lesions identified with fReANCs are 2.25 times smaller than those detected with ReANCs. Thus, an integrated nanoprobe detection platform is presented, which allows target-specific identification of subtissue cancerous lesions.


Assuntos
Raios Infravermelhos , Neoplasias Pulmonares/patologia , Nanopartículas/química , Micrometástase de Neoplasia/diagnóstico , Imagem Óptica/métodos , Ondas de Rádio , Receptores CXCR4/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Metais Terras Raras/química , Camundongos Nus , Especificidade de Órgãos
4.
Adv Healthc Mater ; 4(9): 1376-85, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-25925128

RESUMO

Magnetic resonance imaging (MRI)- and near-infrared (NIR)-active, multimodal composite nanocarriers (CNCs) are prepared using a simple one-step process, flash nanoprecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) (PEG) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 × 10(-3) m(-1) s(-1) for CNCs formulated with 4-16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver-targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm(3) non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye tris-(porphyrinato)zinc(II) into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents.


Assuntos
Meios de Contraste , Portadores de Fármacos , Compostos Férricos , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Imagem Óptica/métodos , Animais , Meios de Contraste/química , Meios de Contraste/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Camundongos , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
5.
Adv Healthc Mater ; 2(9): 1236-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23495216

RESUMO

Current cancer therapies are challenged by weakly soluble drugs and by drug combinations that exhibit non-uniform biodistribution and poor bioavailability. In this study, we have presented a new platform of advanced healthcare materials based on albumin nanoparticles (ANPs) engineered as tumor penetrating, delivery vehicles of combinatorially applied factors to solid tumors. These materials were designed to overcome three sequential key barriers: tissue level transport across solid tumor matrix; uptake kinetics into individual cancer cells; therapeutic resistance to single chemotherapeutic drugs. The ANPs were designed to penetrate deeper into solid tumor matrices using collagenase decoration and evaluated using a three-dimensional multicellular melanoma tumor spheroid model. Collagenase modified ANPs exhibited 1-2 orders of magnitude greater tumor penetration than unmodified ANPs into the spheroid mass after 96 hours, and showed preferential uptake into individual cancer cells for smaller sized ANPs (<100 nm). For enhanced efficacy, collagenase coated ANPs were modified with two therapeutic agents, curcumin and riluzole, with complementary mechanisms of action for combined cell cycle arrest and apoptosis in melanoma. The collagenase coated, drug loaded nanoparticles induced significantly more cell death within 3-D tumor models than the unmodified, dual drug loaded ANP particles and the kinetics of cytotoxicity was further influenced by the ANP size. Thus, multifunctional nanoparticles can be imbued with complementary size and protease activity features that allow them to penetrate solid tumors and deliver combinatorial therapeutic payload with enhanced cancer cytotoxicity but minimal collateral damage to healthy primary cells.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Albumina Sérica/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colagenases/metabolismo , Curcumina/administração & dosagem , Curcumina/química , Curcumina/toxicidade , Humanos , Nanopartículas/ultraestrutura , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Riluzol/administração & dosagem , Riluzol/química , Riluzol/toxicidade , Albumina Sérica/genética , Albumina Sérica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...