Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 18(31): e2201487, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35802906

RESUMO

There is a compelling need across several industries to substitute non-degradable, intentionally added microplastics with biodegradable alternatives. Nonetheless, stringent performance criteria in actives' controlled release and manufacturing at scale of emerging materials hinder the replacement of polymers used for microplastics fabrication with circular ones. Here, the authors demonstrate that active microencapsulation in a structural protein such as silk fibroin can be achieved by modulating protein protonation and chain relaxation at the point of material assembly. Silk fibroin micelles' size is tuned from several to hundreds of nanometers, enabling the manufacturing-by retrofitting spray drying and spray freeze drying techniques-of microcapsules with tunable morphology and structure, that is, hollow-spongy, hollow-smooth, hollow crumpled matrices, and hollow crumpled multi-domain. Microcapsules degradation kinetics and sustained release of soluble and insoluble payloads typically used in cosmetic and agriculture applications are controlled by modulating fibroin's beta-sheet content from 20% to near 40%. Ultraviolet-visible studies indicate that burst release of a commonly used herbicide (i.e., saflufenacil) significantly decreases from 25% to 0.8% via silk fibroin microencapsulation. As a proof-of-concept for agrochemicals applications, a 6-day greenhouse trial demonstrates that saflufenacil delivered on corn plants via silk microcapsules reduces crop injury when compared to the non-encapsulated version.


Assuntos
Fibroínas , Seda , Cápsulas , Fibroínas/química , Microplásticos , Plásticos , Seda/química
2.
Environ Sci Technol ; 40(19): 6151-6, 2006 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17051814

RESUMO

The production of nanoparticles (NPs) is increasing rapidly for applications in electronics, chemistry, and biology. This interest is due to the very small size of NPs which provides them with many interesting properties such as rapid diffusion, high specific surface areas, reactivity in liquid or gas phase, and a size close to biomacromolecules. In turn, these extreme abilities might be a problem when considering a potentially uncontrolled exposure to the environment. For instance, nanoparticles might be highly mobile and rapidly transported in the environment or inside the body through a water or air pathway. Accordingly, the very fast development of these new synthetic nanomaterials raises questions about their impact on the environment and human health. We have studied the impact of a model water dispersion of nanoparticles (7 nm CeO2 oxide) on a Gram-negative bacteria (Escherichia coli). The nanoparticles are positively charged at neutral pH and thus display a strong electrostatic attraction toward bacterial outer membranes. The counting of colony forming units (CFU) after direct contact with CeO2 NPs allows for the defining of the conditions for which the contact is lethal to Escherichia coli. Furthermore, a set of experiments including sorption isotherms, TEM microscopy, and X-ray absorption spectroscopy (XAS) at cerium L3 edge is linked to propose a scenario for the observed toxic contact.


Assuntos
Cério/toxicidade , Escherichia coli/efeitos dos fármacos , Nanopartículas/toxicidade , Adsorção , Contagem de Colônia Microbiana , Escherichia coli/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...