Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512672

RESUMO

Object-space model optimization (OSMO) has been proven to be a simple and high-accuracy approach for additive manufacturing of tomographic reconstructions compared with other approaches. In this paper, an improved OSMO algorithm is proposed in the context of OSMO. In addition to the two model optimization steps in each iteration of OSMO, another two steps are introduced: one step enhances the target regions' in-part edges of the intermediate model, and the other step weakens the target regions' out-of-part edges of the intermediate model to further improve the reconstruction accuracy of the target boundary. Accordingly, a new quality metric for volumetric printing, named 'Edge Error', is defined. Finally, reconstructions on diverse exemplary geometries show that all the quality metrics, such as VER, PW, IPDR, and Edge Error, of the new algorithm are significantly improved; thus, this improved OSMO approach achieves better performance in convergence and accuracy compared with OSMO.

2.
Nanomaterials (Basel) ; 13(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446504

RESUMO

Two-dimensional (2D) materials own unique band structures and excellent optoelectronic properties and have attracted wide attention in photonics. Tin disulfide (SnS2), a member of group IV-VI transition metal dichalcogenides (TMDs), possesses good environmental optimization, oxidation resistance, and thermal stability, making it more competitive in application. By using the intensity-dependent transmission experiment, the saturable absorption properties of the SnS2 nanosheet nearly at 3 µm waveband were characterized by a high modulation depth of 32.26%. Therefore, a few-layer SnS2 was used as a saturable absorber (SA) for a bulk Er:SrF2 laser to research its optical properties. When the average output power was 140 mW, the passively Q-switched laser achieved the shortest pulse width at 480 ns, the optimal single pulse energy at 3.78 µJ, and the highest peak power at 7.88 W. The results of the passively Q-switched laser revealed that few-layer SnS2 had an admirable non-linear optical response at near 3 µm mid-infrared solid-state laser.

3.
Micromachines (Basel) ; 14(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37374856

RESUMO

Semiconductor lasers have developed rapidly with the steady growth of the global laser market. The use of semiconductor laser diodes is currently considered to be the most advanced option for achieving the optimal combination of efficiency, energy consumption, and cost parameters of high-power solid-state and fiber lasers. In this work, an approach for optical mode engineering in planar waveguides is investigated. The approach referred to as Coupled Large Optical Cavity (CLOC) is based on the resonant optical coupling between waveguides and allows the selection of high-order modes. The state-of-art of the CLOC operation is reviewed and discussed. We apply the CLOC concept in our waveguide design strategy. The results in both numerical simulation and experiment show that the CLOC approach can be considered a simple and cost-efficient solution for improving diode laser performance.

4.
Opt Express ; 30(14): 24689-24702, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237017

RESUMO

Traditional planar diffractive optical elements (DOEs) are challenged in imaging systems due to diffraction efficiency and chromatic dispersion. In this paper, we have designed a microfluidic diffractive optical element (MFDOE), which is processed by digital micromirror device (DMD) maskless lithography (DMDML) assisted femtosecond laser direct writing (FsLDW). MFDOE is a combination of photoresist-based multi-layer harmonic diffraction surface and liquid, realizing diffraction efficiency of more than 90% in the visible band. And it shows achromatic characteristics in the two bands of 469 nm (±20 nm) and 625 nm (±20 nm). These results show that MFDOE has good imaging performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...