Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oral Dis ; 29(1): 154-164, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34897887

RESUMO

OBJECTIVE: Tertiary lymphoid structures (TLSs) provide sites for antigen presentation and activation of lymphocytes, promoting their infiltration; thus, enhancing specific immune responses. The aim of this comparative cross-sectional study was to reveal the characteristics and influence of TLSs in oral lichen planus (OLP) and oral epithelial dysplasia (OED) with lichenoid features. METHODS: Clinical information and samples of 51 OLP and 19 OED with lichenoid features were collected. Immunohistochemistry was performed, and the structures where CD20+ B cells and CD3+ T cells aggregated with peripheral lymph node addressin positive (PNAd+) vessels were defined as TLSs. The results and clinical information were analysed. RESULT: TLS were found in 44 (86.3%) patients with OLP and 19 (100%) patients with OED. The TLS score was higher in OED group (p = 0.023), accompanied by an increased number of PNAd+ vessels. The TLS was significantly correlated with PNAd+ vessels (p = 0.027), CD20+ B (p < 0.001) and CD208+ dendritic cells (p = 0.001). Foxp3+ Treg cells but not CD8+ T cells infiltrated more severely in OED (p = 0.003) and increased when TLS score was high (p = 0.002). CONCLUSIONS: This study revealed the widespread development of TLSs in the OLP and OED. The presence of TLSs showed a close relationship with dysplasia and may increase malignant potency by over-inducing Treg cells.


Assuntos
Líquen Plano Bucal , Erupções Liquenoides , Estruturas Linfoides Terciárias , Humanos , Líquen Plano Bucal/patologia , Estruturas Linfoides Terciárias/patologia , Estudos Transversais , Hiperplasia , Proteínas de Membrana
2.
J Transl Med ; 19(1): 513, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930321

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment, have prominent roles in the development of solid tumors as stromal targets. However, the underlying mechanism of CAFs' function in oral squamous cell carcinoma (OSCC) development remains unclear. Here, we investigated the role of lysyl oxidase (LOX) expression in CAFs in tumor stromal remodeling and the mechanism of its effect on OSCC progression. METHODS: Multiple immunohistochemistry (IHC) staining was performed to detect the correlation of CAFs and LOX in the stroma of OSCC specimens, as well as the correlation with clinicopathological parameters and prognosis. The expression of LOX in CAFs were detected by RT-qPCR and western blot. The effects of LOX in CAFs on the biological characteristics of OSCC cell line were investigated using CCK-8, wound-healing and transwell assay. CAFs were co-cultured with type I collagen in vitro, and collagen contraction test, microstructure observation and rheometer were used to detect the effect of CAFs on remodeling collagen matrix. Then, collagen with different stiffness were established to investigate the effect of matrix stiffness on the progression of OSCC. Moreover, we used focal adhesion kinase (FAK) phosphorylation inhibitors to explored whether the increase in matrix stiffness promote the progression of OSCC through activating FAK phosphorylation pathway. RESULTS: LOX was colocalized with CAFs in the stroma of OSCC tissues, and its expression was significantly related to the degree of malignant differentiation and poor prognosis in OSCC. LOX was highly expressed in CAFs, and its knockdown impaired the proliferation, migration, invasion and EMT process of OSCC cells. The expression of LOX in CAFs can catalyze collagen crosslinking and increase matrix stiffness. Furthermore, CAFs-derived LOX-mediated increase in collagen stiffness induced morphological changes and promoted invasion and EMT process in OSCC cells by activating FAK phosphorylation pathway. CONCLUSIONS: Our findings suggest that CAFs highly express LOX in the stroma of OSCC and can remodel the matrix collagen microenvironment, and the increase in matrix stiffness mediated by CAFs-derived LOX promotes OSCC development through FAK phosphorylation pathway. Thus, LOX may be a potential target for the early diagnosis and therapeutic treatment of OSCC.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Bucais/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA