Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38921922

RESUMO

Extensive use of pesticides in agricultural production has been causing serious health threats to humans and animals. Among them, phorate is a highly toxic organophosphorus insecticide that has been widely used in planting. Due to its harmful effects on human and animal health, it has been restricted for use in many countries. Analytical methods for the rapid and sensitive detection of phorate residues in agricultural products are urgently needed. In this study, a new method was developed by combining surface-enhanced Raman spectroscopy (SERS) and immunochromatography assay (ICA). Hybrid magnetic Fe3O4@Au@DTNB-Ab nanoprobes were prepared by modifying and growing Au nanoseeds on an Fe3O4 core. SERS activity of the nanoprobe was optimized by adjusting the concentration of the Au precursor. A rapid and sensitive assay was established by replacing the traditional colloidal gold-based ICA with hybrid SERS nanoprobes for SERS-ICA. After optimizing parameters including coating antibody concentrations and the composition and pH of the buffer solution, the limit of detection (LOD) for phorate could reach 1 ng/mL, with a linear range of 5~100 ng/mL. This LOD is remarkably lower than the maximum residue limit in vegetables and fruits set by the Chinese government. The feasibility of this method was further examined by conducting a spiking test with celery as the real sample. The result demonstrated that this method could serve as a promising platform for rapid and sensitive detection of phorate in agricultural products.

2.
Heliyon ; 10(8): e29735, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38681547

RESUMO

The carcinogenic and teratogenic risks of nitrofurazone (NFZ) led to its restriction in aquatic products. Semicarbazide (SEM), one of its metabolites, is a primary focus of modern monitoring techniques. However, the SEM residue in aquatic products is believed to be formed through endogenous mechanisms, especially for aquatic crustaceans. In this article, we will discuss the source of SEM, including its usage as an antibiotic in aquatic products (nitrofurazone), its production during food processing (azodicarbonamide and hypochlorite treatment), its occurrence naturally in the body, and its intake from the environment. SEM detection techniques were divided into three groups: derivatization, extraction/purification, and analytical methods. Applications based on liquid chromatography and its tandem mass spectrometry, immunoassay, and electrochemical methods were outlined, as were the use of various derivatives and their assisted derivatization, as well as extraction and purification techniques based on liquid-liquid extraction and solid-phase extraction. The difficulties of implementing SEM for nitrofurazone monitoring in aquatic products from crustaceans are also discussed. Possible new markers and methods for detecting them are discussed. Finally, the present research on monitoring illicit nitrofurazone usage through its metabolites is summarised, and potential problems that need to be overcome by continuing research are proposed with an eye toward giving references for future studies.

3.
J Adv Res ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38237769

RESUMO

INTRODUCTION: Deoxynivalenol (DON) is widely found in grains and poses a serious threat to human health, so there is an urgent need to develop methods for its simultaneous removal and detection. The novel metal organic framework (MOF) material BUT-16 has a high adsorption capacity (79.8%) for DON. Meanwhile, surface-enhanced Raman spectroscopy (SERS) has been widely used for rapid detection of analytes. OBJECTIVES: The aim of this work is to prepare a material that can be used for enhancement SERS detection and efficient removal of DON. METHODS: AuNRs@BUT-16 was prepared by in-situ solvothermal method and characterized using a series of characterization tools. AuNRs@BUT-16 was used as an adsorbent and SERS substrate for the removal and detection of DON, and some factors affecting the adsorption and SERS detection were investigated. The adsorption mechanism between DON and AuNRs@BUT-16 was investigated using molecular docking. The proposed SERS method was used to detect DON contamination in real samples. RESULTS: The prepared core-shell AuNRs@BUT-16 showed a synergistic effect in improving DON adsorption and SERS response. 97.6 % of DON was removed by AuNRs@BUT-16 in aqueous solution, and 70 % in 80 % methanol. The pre-enrichment effect of BUT-16 could trap more DON molecules in the "hot spots" of AuNRs, thus the proposed SERS sensor based on AuNRs@BUT-16 substrate displayed outstanding SERS response and the limit of detection of DON was 3.87 × 10-3 µg/mL. Molecular docking revealed that hydrogen bond and π-alkyl interaction were the main reasons for high affinity between BUT-16 and DON, and Au-O bonds facilitated the adsorption of DON on AuNRs. CONCLUSIONS: AuNRs@BUT-16 with superior enrichment and SERS detection capabilities has been used for simultaneous removal and SERS detection of DON, and it also has great potential to realize sensitive and selective detection and removal of DON in multiple disciplines.

4.
Analyst ; 149(4): 1151-1159, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38259149

RESUMO

Edible chrysanthemum is widely cultivated and used as an important ingredient of medicine, tea and multifunctional food. During the planting of chrysanthemum, pesticides are extensively used for preventing plant diseases and insect pests. To ensure the food safety of edible chrysanthemum, rapid detection methods are urgently needed for on-site inspection. In this study, a graphene oxide/Au nanoparticle (GO/Au NP) cellulose substrate was prepared through layer-by-layer assembly of GO and Au NPs on a mixed cellulose ester membrane. Surface-enhanced Raman spectroscopy (SERS) detection of four types of organophosphorus and organosulfur pesticides was achieved by filtering the extracting solution through the substrate and analysing SERS spectra. Qualitative and semi-quantitative detection of fenthion, phoxim, isocarbophos and thiram was accomplished with the detection limits of 38.01, 8.13, 48.97 and 8.74 ng mL-1, respectively. A spiking experiment further demonstrated the feasibility of this method for rapid and on-site detection of mixed pesticides in chrysanthemum. This study provides a new approach for rapid detection of multiple hazardous substances in flowering and herbal plants.


Assuntos
Grafite , Nanopartículas Metálicas , Resíduos de Praguicidas , Praguicidas , Resíduos de Praguicidas/análise , Ouro/química , Nanopartículas Metálicas/química , Praguicidas/análise , Análise Espectral Raman/métodos , Celulose
5.
Anal Bioanal Chem ; 416(3): 745-757, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37812219

RESUMO

Moenomycin A, an antimicrobial growth promoter widely used as an additive in aquaculture feedstuffs, has been restricted for use in the European Union and China due to its potential risk of promoting resistant strains of pathogenic bacteria and causing residues in aquatic animal products. Although methods for analyzing moenomycin A in feedstuffs have been developed, no established method exists for aquatic matrices. In this study, we present, for the first time, a sensitive and validated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for the determination of moenomycin A in aquatic animal products. Samples were extracted using methanol and purified with the QuEChERS method employing C18 sorbent. The aliquot was dried under a nitrogen stream, reconstituted with methanol-water solvent, and analyzed by HPLC-MS/MS. The developed method exhibited good linearity (r2 > 0.995) over a wide concentration range (1-100 µg/L) and a low limit of detection (1 µg/kg). Average recoveries ranged between 70 and 110% at spiked concentrations of 1, 50, and 100 µg/kg, with associated intra- and inter-day relative standard deviations of 1.25 to 7.32% (n = 6) and 2.91 to 10.08% (n = 3), for different representative aquatic animal production, respectively. To the best of our knowledge, this is the first reported HPLC-MS/MS method for the quantification of moenomycin A in aquatic animal products. The new approach was effectively employed in the analysis of moenomycin A across various aquatic samples.


Assuntos
Metanol , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , China , Extração em Fase Sólida/métodos
6.
J Agric Food Chem ; 71(41): 15388-15397, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37797339

RESUMO

A novel, simplified derivatization method and a rapid sample preparation process using carbon yarn as a sorbent for the determination of 3-chloropropane-1,2-diol (3-MCPD) in soy sauce via high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed. 3-MCPD was first enriched and purified with carbon yarn and then eluted with a methanol-water solution. Subsequently, the analyte underwent derivatization with p-(dimethylamino)-phenol for sensitive detection via HPLC-MS/MS. The limit of detection and the limit of quantitation for 3-MCPD were validated to be 0.5 and 1.0 µg/kg, respectively. Spiking experiments showed recoveries between 83 and 94%, with a relative standard deviation of ≤10%. The method was further validated with a certified reference material. Furthermore, 11 real soy sauce samples from local markets were tested by using this method. These results reveal the widespread 3-MCPD contamination. Consequently, this study offers a preferable alternative for the sensitive, accurate, and precise determination of 3-MCPD in soy sauce.


Assuntos
Alimentos de Soja , alfa-Cloridrina , Alimentos de Soja/análise , alfa-Cloridrina/análise , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão , Carbono
7.
Food Chem ; 429: 136944, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487389

RESUMO

Mycotoxins are toxic metabolites produced by fungi in the process of infecting agricultural products, posing serious threat to the health of human and animals. Thus, sensitive and reliable analytical techniques for mycotoxin detection are needed. Biosensors equipped with antibodies or aptamers as recognition elements and core-shell nanoparticles (NPs) for the pre-treatment and detection of mycotoxins have been extensively studied. By comparison with monocomponent NPs, core-shell nanostructures exhibit unique optical, electric, magnetic, plasmonic, and catalytic properties due to the combination of functionalities and synergistic effects, resulting in significant improvement of sensing capacities in various platforms, such as surface-enhanced Raman spectroscopy, fluorescence, lateral flow immunoassay and electrochemical sensors. This review focused on the development of core-shell NPs based biosensors for the sensitive and accurate detection of mycotoxins in food samples. Recent developments were categorised and summarised, along with detailed discussion of advantages and shortcomings. The future potential of utilising core-shell NPs in food safety testing was also highlighted.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Micotoxinas , Nanopartículas , Animais , Humanos , Micotoxinas/análise , Fungos/química , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química
8.
J Mater Chem B ; 11(12): 2727-2732, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36880155

RESUMO

In this work, a novel method for the colorimetric sensing of α-glucosidase (α-Glu) activity was developed based on CoOOH nanoflakes (NFs), which exhibit efficient oxidase-mimicking activity. Colorless 3,3',5,5'-tetramethylbenzidine (TMB) can be oxidized by CoOOH NFs into blue-colored oxidized TMB (oxTMB) in the absence of H2O2. L-Ascorbic acid-2-O-α-D-glucopyranose (AAG) can be hydrolysed by α-glucosidase to produce ascorbic acid, resulting in a significant decrease of catalytic activity of CoOOH NFs. Thus, a colorimetric α-glucosidase activity detection method was designed with a limit of detection of 0.0048 U mL-1. Furthermore, the designed sensing platform exhibits favorable applicability for the α-glucosidase (α-Glu) activity assay in real samples. Meanwhile, this method can be expanded to study the inhibitors of α-Glu. Finally, the as-proposed method combined with a smartphone would be a color recognizer, which was successfully applied for the determination of α-Glu activity in human serum samples.


Assuntos
Peróxido de Hidrogênio , alfa-Glucosidases , Humanos , Óxidos , Oxirredutases
9.
Foods ; 12(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36981058

RESUMO

Pesticide residues in aquatic products are of great concern due to the risk of environmental transmission and their extensive use in aquaculture. In our work, a quick screening approach was developed for the qualitative and semi-quantitative screening of 87 pesticide residues in aquatic products. The sample preparation was investigated, including extract solvent, extract methods, buffer salts, lipid removal, cleanup materials and filter membranes for aquatic products. Samples were extracted using a modified QuEChERS procedure, and two clean-up procedures were developed for UHPLC-Q/Orbitrap MS analysis based on the fat content of the aquatic products. The screening detection limits for all studied pesticides were distributed between 1 and 500 µg/kg in the three representative matrices. Seventy-one pesticides could be analyzed with a screening limit between 1 and 25 µg/kg in grass carp and crayfish, sixty-one pesticides could be screened for limits between 1 and 50 µg/kg in crab. The accuracy results showed that recoveries ranged from 50 to 120% for 60, 56 and 52 pesticides at medium-level for grass carp, crayfish and crab, respectively. At high spiking levels, 74, 65 and 59 pesticides were recovered within the range of 50-120% for the three matrices, respectively. The relative standard deviations of most compounds in different matrices were less than 20%. With this method, the local farmed aquatic products were tested for pesticide residues. In these samples, ethoxyquinoline, prometryn and phoxim were frequently detected. The majority of these confirmed compounds did not exceed 2.00 µg/kg. A grass carp with trichlorfon at 4.87 µg/kg and two carps with ethoxyquinoline at 200 µg/kg were detected, indicating the potential dietary risk.

10.
Foods ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36613439

RESUMO

Extensive and high residue variations in enrofloxacin (ENR) exist in different aquatic products. A novel quantitative method for measuring ENR using high-performance liquid chromatography-tandem mass spectrometry was developed employing enrofloxacin-d5 (ENR-d5) and enrofloxacin-d3 (ENR-d3) as isotope surrogates. This reduced the deviation of detected values, which results from the overpass of the linear range and/or the large difference in the residue between the isotope standard and ENR, from the actual content. Furthermore, high residue levels of ENR can be directly diluted and re-calibrated by the corresponding curve with the addition of high levels of another internal surrogate without repeated sample preparation, avoiding the overflow of the instrument response. The validation results demonstrated that the method can simultaneously determine ENR residues from MQL (2 µg/kg) to 5000 × MQL (method quantification limit) with recoveries between 97.1 and 106%, and intra-precision of no more than 2.14%. This method realized a wide linear calibration range with dual deuterated isomers, which has not been previously reported in the literature. The developed method was successfully applied to the analysis of ENR in different aquatic products, with ENR residue levels varying from 108 to 4340 µg/kg and an interval of precision in the range of 0.175~6.72%. These results demonstrate that batch samples with a high variation in ENR residues (over the linear range with a single isotope standard) can be detected by the dual isotope surrogates method in a single sample preparation process.

11.
Foods ; 11(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36429190

RESUMO

Malathion, phoxim, and thiram are organophosphates and organosulfur pesticides widely used in agricultural products. The residues of these pesticides present a direct threat to human health. Rapid and on-site detection is critical for minimizing such risks. In this work, a simple approach was introduced using a flexible surface-enhanced Raman spectroscopy (SERS) substrate. The prepared Ag nanoparticles-polydimethylsiloxane (AgNPs-PDMS) substrate showed high SERS activity, good precision (relative standard deviation = 5.33%), and stability (30 days) after optimization. For target pesticides, the linear relationship between characteristic SERS bands and concentrations were achieved in the range of 10~1000, 100~5000, and 50~5000 µg L-1 with LODs down to 3.62, 41.46, and 15.69 µg L-1 for thiram, malathion, and phoxim, respectively. Moreover, SERS spectra of mixed samples indicated that three pesticides can be identified simultaneously, with recovery rates between 96.5 ± 3.3% and 118.9 ± 2.4%, thus providing an ideal platform for detecting more than one target. Pesticide residues on orange surfaces can be simply determined through swabbing with the flexible substrate before acquiring the SERS signal. This study demonstrated that the prepared substrate can be used for the rapid detection of pesticides on real samples. Overall, this method greatly simplified the pre-treatment procedure, thus serving as a promising analytical tool for rapid and nondestructive screening of malathion, phoxim, and thiram on various agricultural products.

12.
Biosensors (Basel) ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36671873

RESUMO

Malachite green (MG) is a synthetic poisonous organic compound that has been banned in many countries as a veterinary drug for aquaculture. An efficient, fast and sensitive method is urgently needed for monitoring the illegal use of malachite green (MG) in aquaculture. In this study, a novel ratiometric fluorescence immunoassay was established. Nitrogen-doped carbon quantum dots were used as ratiometric fluorescent probes with a fluorescence peak at 450 nm. Horseradish peroxidase was employed to convert o-phenylenediamine to 2,3-diaminophenazine, with a new fluorescence peak at 580 nm and a strong absorption at 420 nm. The inner filter effect between N-CQD fluorescence and DAP absorption was identified. It allows for the ratiometric detection of MG using a fluorescent immunoassay. The results demonstrated a linear ratiometric fluorescence response for MG between 0.1 and 12.8 ng·mL-1. The limit of detection of this method was verified to be 0.097 µg·kg-1 with recoveries ranging from 81.88 to 108%, and the relative standard deviations were below 3%. Furthermore, this method exhibited acceptable consistency with the LC-MS/MS results when applied for MG screening in real samples. These results demonstrated a promising application of this novel ratiometric fluorescence immunoassay for MG screening with the merits of rapid detection, simple sample preparation, and stable signal readout. It can be an alternative to other traditional methods if there are difficulties in the availability of expensive instruments, and achieve comparable results or even more sensitivity than other reported methods.


Assuntos
Pontos Quânticos , Animais , Carbono , Cromatografia Líquida , Espectrometria de Massas em Tandem , Espectrometria de Fluorescência , Peixes , Corantes Fluorescentes , Imunoensaio , Limite de Detecção
13.
Food Chem ; 376: 131898, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34968914

RESUMO

A green and facile hydrothermal synthesis approach is proposed for the preparation of nitrogen-doped carbon quantum dots (N-CQDs) with wolfberry. These N-CQDs were developed as a highly sensitive fluorescent 'on-off-on' switch sensor for the sensing of Fe3+ and l-ascorbic acid (AA). The N-CQDs displayed superior fluorescence characteristics of CQDs with a quantum yield up to 22%. The N-CQDs were demonstrated to selectively react with Fe3+, leading to fluorescence quenching effect, which was successfully used for the detection of Fe3+ with a limit of detection at 3 µmoL•L-1. The addition of AA is supposed to repair the surface defects, and result in the fluorescence recovery. Based on this effect, the strategy of 'on-off-on' detection of AA was established with a limit of detection at 1.8 µmoL•L-1. Furthermore, the practical application of the detection of Fe3+ lake water and AA in medical tablet was demonstrated, promising an effective and efficient 'on-off-on' nanosensor with low-cost, green synthesis for Fe3+ and AA detection.

14.
Int J Anal Chem ; 2021: 9980212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046066

RESUMO

The intensive aquaculture strategy and recirculating aquaculture system often lead to the production of off-flavor compounds such as 2-methyl-isoborneol (2-MIB) and Geosmin (GSM). The regular purge and trap extraction followed by analysis with gas chromatography-mass spectrometry (GC-MS) usually involve a complicated assembly of facilities, more working space, long sample preparation time, and headspace solid-phase microextraction (SPME). In this work, a method with easier sample preparation, fewer and simplified facilities, and without SPME on GC-MS analysis is developed for the determination of 2-MIB and GSM in fish samples. Unlike previous methods, solvent extract from samples, QuEChERS-based cleanup, and solid-phase extraction for concentration are applied. The LOD (S/N > 3) and LOQ (S/N > 10) of this method were validated at 0.6 µg/kg and 1.0 µg/kg for both 2-MIB and GSM, which are under the sensory limit (1 µg/kg). Application of this method for incurred fish samples demonstrated acceptable analytical performance. This method is suitable for large-scale determination of 2-MIB and GSM in fish samples, owing to the use of simple facility and easy-to-operate procedure, rapid sample preparation, and shorter time for GC-MS analysis without SPME.

15.
Compr Rev Food Sci Food Saf ; 20(2): 1887-1909, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33410224

RESUMO

Mycotoxins are toxic compounds naturally produced by certain types of fungi. The contamination of mycotoxins can occur on numerous foodstuffs, including cereals, nuts, fruits, and spices, and pose a major threat to humans and animals by causing acute and chronic toxic effects. In this regard, reliable techniques for accurate and sensitive detection of mycotoxins in agricultural products and food samples are urgently needed. As an advanced analytical tool, surface-enhanced Raman spectroscopy (SERS), presents several major advantages, such as ultrahigh sensitivity, rapid detection, fingerprint-type information, and miniaturized equipment. Benefiting from these merits, rapid growth has been observed under the topic of SERS-based mycotoxin detection. This review provides a comprehensive overview of the recent achievements in this area. The progress of SERS-based label-free detection, aptasensor, and immunosensor, as well as SERS combined with other techniques, has been summarized, and in-depth discussion of the remaining challenges has been provided, in order to inspire future development of translating the techniques invented in scientific laboratories into easy-to-operate analytic platforms for rapid detection of mycotoxins.


Assuntos
Técnicas Biossensoriais , Micotoxinas , Animais , Fungos , Humanos , Imunoensaio , Análise Espectral Raman
16.
Anal Chem ; 93(2): 946-955, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33206502

RESUMO

Nonspecific binding and weak spectral discernment are the main challenges for surface-enhanced Raman scattering (SERS) detection, especially in real sample analysis. Herein, molecularly imprinted polymer (MIP)-based core-shell AuNP@polydopamine (AuNP@PDA-MIP) nanoparticles (NPs) are designed and immobilized on an electrochemically reduced MoS2-modified screen-printed electrode (SPE). This portable electrochemical-Raman interface offers the dual functions of electrokinetic preseparation (EP) and MIP trapping of charged molecules so that a reliable SERS recognition with molecular selectivity and high sensitivity can be achieved. Core-shell AuNP@PDA-MIP NPs can be controllably synthesized, possess predesigned specific recognition, and provide "hot spots" at the junction of NPs. The introduction of an electric field enables the autonomous exclusion and separation of similarly charged molecules as well as attraction and concentration of the oppositely charged molecules by electrostatic attraction. Subsequently, the specific MIP recognition cavities allow selective adsorption of targets on the interface without the interference of analogues. Owing to the distinctive design of the multiple coupling separation, trapping, and enrichment strategies, the MIP-based SERS-active interface can be used for label-free detection of charged molecules in real samples without pretreatment. As a proof-of-concept study, label-free SERS detection of charged phthalate plasticizers (PAEs) was demonstrated with a detection limit as low as 2.7 × 10-12 M for dimethyl phthalate (DMP) and 2.3 × 10-11 M for di(2-ethylhexyl) phthalate (DEHP). This sensing strategy for in situ SERS analysis of charged pollutants or toxins holds vast promises for a wide range of in-field applications.


Assuntos
Impressão Molecular , Ácidos Ftálicos/análise , Plastificantes/análise , Ouro/química , Indóis/química , Estrutura Molecular , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Análise Espectral Raman , Propriedades de Superfície
17.
Toxins (Basel) ; 12(2)2020 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098355

RESUMO

Type-B aflatoxins (AFB1 and AFB2) frequently contaminate food, especially nuts and fried figs, and seriously threaten human health; hence, it is necessary for the newly rapid and sensitive detection methods to prevent the consumption of potentially contaminated food. Here, a lateral flow aptasensor for the detection of type-B aflatoxins was developed. It is based on the use of fluorescent dye Cy5 as a label for the aptamer, and on the competition between type-B aflatoxins and the complementary DNA of the aptamer. This is the first time that the complementary strand of the aptamer has been used as the test line (T-line) to detect type-B aflatoxins. In addition, the truncated aptamer was used to improve the affinity with type-B aflatoxins in our study. Therefore, the lengths of aptamer and cDNA probe were optimized as key parameters for higher sensitivity. In addition, binding buffer and organic solvent were investigated. The results showed that the best pair for achieving improved sensitivity and accuracy in detecting AFB1 was formed by a shorter aptamer (32 bases) coupled with the probe complementary to the AFB1 binding region of the aptamer. Under the optimal experimental conditions, the test strip showed an excellent linear relationship in the range from 0.2 to 20 ng/mL with a limit of detection of 0.16 ng/mL. This aptamer-based strip was successfully applied to the determination of type-B aflatoxins in spiked and commercial peanuts, almonds, and dried figs, and the recoveries of the spiked samples were from 93.3%-112.0%. The aptamer-complementary strand-based lateral flow test strip is a potential alternative tool for the rapid and sensitive detection of type-B aflatoxins in nuts and dried figs. It is of help for monitoring aflatoxins to avoid the consumption of unsafe food.


Assuntos
Aflatoxina B1/análise , Aptâmeros de Nucleotídeos/química , Ficus/química , Contaminação de Alimentos/análise , Frutas/química , Nozes/química , Arachis/química , Técnicas Biossensoriais/métodos , Fitas Reagentes , Sensibilidade e Especificidade
18.
Chem Commun (Camb) ; 53(14): 2218-2221, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-27904892

RESUMO

Four novel bis-boronic acid compounds were synthesised via copper catalysed azide-alkyne cycloaddition (CuAAC) reactions. Glucose selectivity was observed for a particular structural motif. Moreover, a new glucose selective fluorescent sensor was designed and synthesised as a result.


Assuntos
Ácidos Borônicos/química , Glucose/química , Alcinos/química , Azidas/química , Sítios de Ligação , Ácidos Borônicos/metabolismo , Calorimetria , Catálise , Cobre/química , Cristalografia por Raios X , Reação de Cicloadição , Corantes Fluorescentes/química , Glucose/metabolismo , Conformação Molecular , Espectrometria de Fluorescência
19.
Org Biomol Chem ; 14(46): 10778-10782, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27604036

RESUMO

The Bull-James boronic acid assembly is used simultaneously as a chiral auxiliary for kinetic resolution and as a chiral shift reagent for in situ enantiomeric excess (ee) determination by 1H NMR spectroscopy. Chiral terminal alkyne-containing amines, and their corresponding chiral triazoles formed via CuAAC, were probed in situ. Selectivity factors of up to s = 4 were imparted and measured, accurate to within ±3% when compared to chiral GC.

20.
Chem Commun (Camb) ; 52(17): 3456-69, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26728041

RESUMO

"Fluorescence imaging" is a particularly exciting and rapidly developing area of research; the annual number of publications in the area has increased ten-fold over the last decade. The rapid increase of interest in fluorescence imaging will necessitate the development of an increasing number of molecular receptors and binding agents in order to meet the demand in this rapidly expanding area. Carbohydrate biomarkers are particularly important targets for fluorescence imaging given their pivotal role in numerous important biological events, including the development and progression of many diseases. Therefore, the development of new fluorescent receptors and binding agents for carbohydrates is and will be increasing in demand. This review highlights the development of fluorescence imaging agents based on boronic acids a particularly promising class of receptors given their strong and selective binding with carbohydrates in aqueous media.


Assuntos
Ácidos Borônicos/química , Carboidratos/química , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Células Hep G2 , Humanos , Camundongos , Imagem Óptica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...