Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; : e0018224, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738873

RESUMO

The appearance and prevalence of multidrug-resistance (MDR) Gram-negative bacteria (GNB) have limited our antibiotic capacity to control bacterial infections. The clinical efficacy of colistin (COL), considered as the "last resort" for treating GNB infections, has been severely hindered by its increased use as well as the emergence and prevalence of mobile colistin resistance (MCR)-mediated acquired drug resistance. Identifying promising compounds to restore antibiotic activity is becoming an effective strategy to alleviate the crisis of increasing MDR. We first demonstrated that the combination of berberine (BBR) and EDTA substantially restored COL sensitivity against COL-resistant Salmonella and Escherichia coli. Molecular docking indicated that BBR can interact with MCR-1 and the efflux pump system AcrAB-TolC, and BBR combined with EDTA downregulated the expression level of mcr-1 and tolC. Mechanically, BBR combined with EDTA could increase bacterial membrane damage, inhibit the function of multidrug efflux pump, and promote oxidative damage, thereby boosting the action of COL. In addition, transcriptome analysis found that the combination of BBR and EDTA can accelerate the tricarboxylic acid cycle, inhibit cationic antimicrobial peptide (CAMP) resistance, and attenuate Salmonella virulence. Notably, the combination of BBR and EDTA with COL significantly reduced the bacterial load in the liver and spleen of a mice model infected with Salmonella. Our findings revealed that BBR and EDTA can be used as adjuvants collectively with COL to synergistically reverse the COL resistance of bacteria. IMPORTANCE: Colistin is last-resort antibiotic used to treat serious clinical infections caused by MDR bacterial pathogens. The recent emergence of transferable plasmid-mediated COL resistance gene mcr-1 has raised the specter of a rapid worldwide spread of COL resistance. Coupled with the fact of barren antibiotic development pipeline nowadays, a critical approach is to revitalize existing antibiotics using antibiotic adjuvants. Our research showed that berberine combined with EDTA effectively reversed COL resistance both in vivo and in vitro through multiple modes of action. The discovery of berberine in combination with EDTA as a new and safe COL adjuvant provides a therapeutic regimen for combating Gram-negative bacteria infections. Our findings provide a potential therapeutic option using existing antibiotics in combination with antibiotic adjuvants and address the prevalent infections caused by MDR Gram-negative pathogens worldwide.

2.
Microbiol Spectr ; 12(4): e0391823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441474

RESUMO

The outer membrane (OM) in gram-negative bacteria contains proteins that regulate the passive or active uptake of small molecules for growth and cell function, as well as mediate the emergence of antibiotic resistance. This study aims to explore the potential mechanisms for restoring bacteria to azithromycin susceptibility based on transcriptome analysis of bacterial membrane-related genes. Transcriptome sequencing was performed by treating multidrug-resistant Escherichia coli T28R with azithromycin or in combination with colistin and confirmed by reverse transcription-quantitative PCR (RT-qPCR). Azithromycin enzyme-linked immunosorbent assay (ELISA) test, ompC gene overexpression, and molecular docking were utilized to conduct the confirmatory research of the potential mechanisms. We found that colistin combined with azithromycin led to 48 differentially expressed genes, compared to azithromycin alone, such as downregulation of tolA, eptB, lpxP, and opgE and upregulation of ompC gene. Interestingly, the addition of colistin to azithromycin differentially downregulated the mph(A) gene mediating azithromycin resistance, facilitating the intracellular accumulation of azithromycin. Also, overexpression of the ompC elevated azithromycin susceptibility, and colistin contributed to further suppression of the Mph(A) activity in the presence of azithromycin. These findings suggested that colistin firstly enhanced the permeability of bacterial OM, causing intracellular drug accumulation, and then had a repressive effect on the Mph(A) activity along with azithromycin. Our study provides a novel perspective that the improvement of azithromycin susceptibility is related not only to the downregulation of the mph(A) gene and conformational remodeling of the Mph(A) protein but also the upregulation of the membrane porin gene ompC.IMPORTANCEUsually, active efflux via efflux pumps is an important mechanism of antimicrobial resistance, such as the AcrAB-TolC complex and MdtEF. Also, bacterial porins exhibited a substantial fraction of the total number of outer membrane proteins in Enterobacteriaceae, which are involved in mediating the development of the resistance. We found that the upregulation or overexpression of the ompC gene contributed to the enhancement of resistant bacteria to azithromycin susceptibility, probably due to the augment of drug uptakes caused and the opportunity of Mph(A) function suppressed by azithromycin with colistin. Under the combination of colistin and azithromycin treatment, OmpC exhibited an increased selectivity for cationic molecules and played a key role in the restoral of the antibiotic susceptibility. Investigations on the regulation of porin expression that mediated drug resistance would be important in clinical isolates treated with antibiotics.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Azitromicina/farmacologia , Colistina/farmacologia , Regulação para Cima , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Porinas/genética , Porinas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Escherichia coli/metabolismo
3.
Microbiol Spectr ; 11(4): e0053023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358428

RESUMO

With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.


Assuntos
Agmatina , Colistina , Colistina/farmacologia , Salmonella typhimurium/genética , Transcriptoma , Agmatina/farmacologia , Ácidos Cetoglutáricos/farmacologia , Antibacterianos/farmacologia , Metaboloma , Testes de Sensibilidade Microbiana
4.
Poult Sci ; 102(2): 102346, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493546

RESUMO

The emergence and rapid spread of multidrug resistant (MDR) Gram-negative bacteria have posed a serious threat to global health and security. Because of the time-consuming, high cost and high risk of developing new antibiotics, a significant method is to use antibiotic adjuvants to revitalize the existing antibiotics. The purpose of the study is to research the traditional Chinese medicine baicalin with the function of inhibiting the efflux pump and EDTA whether their single or combination can increase the activity of colistin against colistin-resistant Salmonella in vitro and in vivo, and to explore its molecular mechanisms. In vitro antibacterial experiments, we have observed that baicalin and EDTA alone could enhance the antibacterial activity of colistin. At the same time, the combination of baicalin and EDTA also showed a stronger synergistic effect on colistin, reversing the colistin resistance of all Salmonella strains. Molecular docking and RT-PCR results showed that the combination of baicalin and EDTA not only affected the expression of mcr-1, but also was an effective inhibitor of MCR-1. In-depth synergistic mechanism analysis revealed that baicalin and EDTA enhanced colistin activity through multiple pathways, including accelerating the tricarboxylic acid cycle (TCA cycle), inhibiting the bacterial antioxidant system and lipopolysaccharide (LPS) modification, depriving multidrug efflux pump functions and attenuating bacterial virulence. In addition, the combinational therapy of colistin, baicalin and EDTA displayed an obvious reduction in bacterial loads cfus of liver and spleen compared with monotherapy and 2-drug combination therapy. In conclusion, our study indicates that the combination of baicalin and EDTA as a novel colistin adjuvant can provide a reliable basis for formulating the therapeutic regimen for colistin resistant bacterial infection.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Ácido Edético/farmacologia , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Testes de Sensibilidade Microbiana/veterinária , Simulação de Acoplamento Molecular , Salmonella
5.
Microbiol Spectr ; 10(1): e0196321, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35170998

RESUMO

Streptococcus suis strain 1112S was isolated from a diseased pig in a feedlot from Henan, China, in 2019. The isolate harbored a linezolid resistance gene optrA. WGS data revealed that the optrA gene was associated with a single copy ETAf ISS1S, in tandem with erm(B) and tet(O), located in a novel 72,587 bp integrative and conjugative element (ICE). Notably, this novel element, designated ICESsu1112S, also carried a novel bacitracin resistance locus. ICESsu1112S could be excised from chromosome and transferred to the recipient strain S. suis P1/7 with a frequency of 5.9 × 10-6 transconjugants per donor cell. This study provided the first description of the coexistence of optrA and a novel bacitracin locus on a multiple antibiotic resistant ICE and highlighted that ICE were major vehicle and contribute to the potential transfer of clinically relevant antibiotic resistance genes. IMPORTANCE Antimicrobial resistance (AMR) caused by the imprudent use of antimicrobials has become a global problem, which poses a serious threat to treatment of S. suis infection in pigs and humans. Importantly, AMR genes can horizontally spread among commensal organisms and pathogenic microbiota, thereby accelerating the dissemination of AMR determinants. These transfers are mainly mediated by mobile genetic elements, including ICEs. In S. suis, ICEs are the major vehicles that contribute to the natural transfers of AMR genes among different bacterial pathogens. However, ICEs that carry optrA and bacitracin resistance locus are rarely investigated in S. suis isolates. Here, we investigated a S. suis isolate carrying an optrA and a novel bacitracin resistance locus, which were co-located on a novel multiple antibiotic resistant ICESsu1112S. Our study suggests that more research is needed to access the real significance of ICEs that horizontally spread clinical important resistance genes.


Assuntos
Bacitracina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Linezolida/farmacologia , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/genética , Animais , Antibacterianos/farmacologia , China , Conjugação Genética , Transferência Genética Horizontal , Genes Bacterianos , Humanos , Infecções Estreptocócicas , Streptococcus suis/isolamento & purificação , Suínos
6.
J Antimicrob Chemother ; 76(12): 3168-3174, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34499729

RESUMO

BACKGROUND: The increasing use of colistin causes a serious breach in our last line of defence against MDR Gram-negative pathogens. Our previous study showed that CpxR overexpression increases the susceptibility of acrB and cpxR double-deleted Salmonella enterica serovar Typhimurium to colistin. OBJECTIVES: To identify the mechanism of CpxAR and efflux pumps that synergistically enhance the susceptibility of S. Typhimurium to colistin. METHODS: A series of cpxR- and tolC-deleted mutants and a cpxR-complemented strain from a multidrug-susceptible standard strain of S. Typhimurium (JS) were generated in our previous study. Herein, we investigated the susceptibility of these strains to colistin through the broth microdilution method, time-kill curves and survival assays. Growth curves were measured by OD600 in LB broth, tryptone-soy broth (TSB) and M9-glucose (0.2%) minimal media. Finally, molecular mechanisms underlying the mode of action were elucidated by transcriptomic analysis. RESULTS: We found that in contrast to JS (0.8 mg/L), the MIC of colistin for JSΔtolC::kan showed a 16-fold decrease (0.05 mg/L). Notably, JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR were associated with a 256-fold decrease (0.0031 mg/L) compared with JS. Growth curves identified that JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR displayed a markedly lower growth rate and poorer adaptability. In addition, time-kill curves and survival assays showed that JSΔcpxRΔtolC and JSΔcpxRΔtolC/pcpxR were more susceptible to colistin. Lastly, double deletion of cpxR and tolC enhanced oxidative damage through promoting oxidative phosphorylation, the tricarboxylic acid (TCA) cycle and trimethylamine N-oxide (TMAO) respiration. CONCLUSIONS: Our findings revealed that double deletion of cpxR and tolC significantly increases the susceptibility of S. Typhimurium to colistin.


Assuntos
Colistina , Salmonella typhimurium , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Proteínas de Membrana Transportadoras/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Sorogrupo
7.
J Antimicrob Chemother ; 75(10): 2780-2786, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32620947

RESUMO

BACKGROUND: The two-component signalling systems PmrAB and PhoPQ of Salmonella have been extensively studied with regard to colistin resistance. We previously showed that overexpressed CpxR could significantly increase the colistin susceptibility (16-fold compared with the WT strain) of Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) through PmrAB and PhoPQ. OBJECTIVES: To identify the potential target genes of CpxR in PmrAB- and PhoPQ-related signalling pathways. METHODS: His6-CpxR was prokaryotically expressed and purified by Ni-NTA resin affinity chromatography. ß-Galactosidase activity assays were conducted to investigate whether CpxR could regulate the promoters of colistin resistance-related genes (CRRGs). Electrophoretic mobility shift assays (EMSAs) were used to further detect His6-CpxR complexes with promoters of CRRGs. RESULTS: We demonstrated for the first time (to the best of our knowledge) that CpxR and the AcrAB-TolC efflux pump have reciprocal effects on CRRG transcription. Additionally, CpxR could regulate the colistin susceptibility of Salmonella Typhimurium by binding directly to the promoters of phoPQ, pmrC, pmrH and pmrD at the CpxR box-like sequences or indirectly through other regulators including pmrAB and mgrB. CONCLUSIONS: CpxR could regulate the colistin susceptibility of Salmonella Typhimurium by a multitarget mechanism.


Assuntos
Proteínas de Bactérias , Colistina , Regulação Bacteriana da Expressão Gênica , Salmonella typhimurium , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Colistina/farmacologia , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Sorogrupo
8.
J Antimicrob Chemother ; 73(11): 3016-3024, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107570

RESUMO

Background: Colistin has been used as the last therapeutic resort for treatment of MDR Gram-negative bacteria infections in humans. The two-component system CpxAR has been reported to contribute to the MDR of bacteria. There may be a more complex network mediated by CpxAR contributing to colistin susceptibility than previously understood. Methods: A series of AcrB or CpxR deletion mutants of a multidrug-susceptible standard strain of Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) was constructed in our previous study. MICs of colistin were determined by the 2-fold serial broth microdilution method. Time-kill and survival assays were carried out with various concentrations of colistin. Growth curves and starvation survival were measured by OD600 or cfu count in LB and M9-glucose (0.2%) minimum media. Quantitative RT-PCR was used to determine the mRNA expression levels of target genes. Results: The results showed that the MIC of colistin for the CpxR-overexpressed strain JSΔacrBΔcpxR::kan/pcpxR was dramatically decreased (0.05 mg/L) by 16-fold compared with JS (0.8 mg/L) and JSΔacrBΔcpxR::kan (0.8 mg/L). Colistin time-kill and survival assays showed that JSΔacrBΔcpxR::kan/pcpxR was more susceptible to colistin (0.05 mg/L), but had a considerably higher survivability regarding prolonged starvation stress compared with JSΔacrBΔcpxR::kan. Furthermore, the expression levels of colistin resistance-related genes (phoP, phoQ, pmrB, pmrC, pmrH and pmrD) were found to be remarkably down-regulated and the negative regulatory protein mgrB was significantly up-regulated. Conclusions: This study demonstrated that CpxR may regulate the colistin susceptibility of Salmonella Typhimurium through the PmrAB and PhoPQ regulatory systems.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Proteínas de Membrana Transportadoras/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Farmacorresistência Bacteriana/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Mutação , Sorogrupo
9.
J Med Microbiol ; 67(6): 733-739, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29687766

RESUMO

PURPOSE: The resistance/nodulation/cell division (RND) family multidrug efflux pump, OqxAB, has been identified as one of the leading mechanisms of plasmid-mediated quinolone resistance and has become increasingly prevalent among Enterobacteriaceae in recent years. However, oqxAB genes have not yet been reported in Enterococcus isolates. The aim of the present study was to identify the oqxAB genes and investigate their prevalence among Enterococcus from swine manure in China. METHODOLOGY: The oqxAB genes were screened in 87 Enterococcus isolates by PCR. The transferability of the oqxAB genes in Enterococcus was determined by conjugation experiments. The genetic environment of oqxAB genes was investigated by cloning experiments, PCR mapping and sequencing. RESULTS: A high prevalence (86.2 %) of olaquindox resistance was observed in Enterococcus and 98.9 % isolates exhibited multidrug-resistance phenotypes. The occurrence of oqxA and oqxB in Enterococcus was also high (79.3 and 65.5 %, respectively). Sequence analysis of the cloned fragment indicated that the oqxAB cassette was linked to an incomplete Tn5 transposon containing aph(3')-IIa and flanked by IS26 [IS26-oqxAB-IS26-aph(3')-IIa]. The oqxAB-aph(3')-IIa-positive transconjugant or transformant showed resistance or reduced susceptibility to enrofloxacin, ciprofloxacin, olaquindox, mequindox, florfenicol, neomycin and kanamycin. CONCLUSION: This is the first time that the oqxAB genes have been identified in Enterococcus faecalis from swine manure. The genetic linkage of oqxAB-aph(3')-IIa in Enterococcus has not been described before. The high prevalence of oqxAB genes in Enterococcus suggests that it may constitute a reservoir for oqxAB genes and pose a potential threat to public health.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Enterococcus/genética , Enterococcus/isolamento & purificação , Esterco/microbiologia , Proteínas de Membrana Transportadoras/genética , Quinoxalinas/farmacologia , Suínos/microbiologia , Animais , Divisão Celular , China , Conjugação Genética , Enrofloxacina , Enterococcus/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Óperon , Plasmídeos , Reação em Cadeia da Polimerase , Quinolonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...