Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 366: 121804, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38996606

RESUMO

The limited availability of carbon sources in low carbon source wastewater has always hindered nitrogen removal efficiency. The residual slurry liquid after anaerobic digestion has the potential to be used as a carbon source. This study investigated the optimal parameters of dissolved oxygen (DO) for enhancing the treatment of low carbon source wastewater using slurry, and revealed the characteristics of carbon metabolism gene enrichment and carbon fixation potential driven by DO. The results indicated that treating wastewater under high DO concentrations (3-4 mg/L) conditions could meet the emission standards set by wastewater treatment plants in China. However, the lower-cost DO concentration of 3 mg/L is considered a more cost-effective parameter, effectively removing 85.68% of chemical oxygen demand and 91.56% of total nitrogen. Mechanistic analysis suggested that reducing DO concentration increased the diversity of microbial communities. Regulating DO concentration reshaped the co-metabolic network of microorganisms with different DO sensitivities by influencing Hydrogenophaga and Chlorobium. This ultimately led to the reconstruction of heterotrophic microbial communities dominated by Sphaerotilus and Acidovorax under high DO conditions, and heterotrophic-autotrophic co-enriched microbial communities dominated by Chlorobium under low DO conditions (1-2 mg/L). Additionally, under high DO conditions, high microbial mass transfer efficiency and the enrichment of functional genes were crucial for achieving high nitrogen removal performance. Further, the microbial carbon fixation potential was relatively high under the DO 3 mg/L condition, helping to reduce the consumption of additional carbon sources. This study provided innovative ideas for the sustainable and low-carbon development of wastewater treatment technology.


Assuntos
Carbono , Oxigênio , Águas Residuárias , Águas Residuárias/química , Carbono/metabolismo , Oxigênio/metabolismo , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Processos Heterotróficos , China , Análise da Demanda Biológica de Oxigênio
2.
Chemosphere ; 359: 142323, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735496

RESUMO

Anoxygenic phototrophic bacteria is a promising catalyst for constructing bioanode, but the mixed culture with non-photosynthetic bacteria is inevitable in an open environment application. In this study, a Rhodopseudomonas-dominated mixed culture with other electrogenic bacteria was investigated for deciphering the differentiated performance on electricity generation in light or dark conditions. The kinetic study showed that reaction rate of OM degradation was 9 times higher than that under dark condition, demonstrating that OM degradation was enhanced by photosynthesis. However, CE under light condition was lower. It indicated that part of OM was used to provide hydrogen donors for the fixation of CO2 or hydrogen production in photosynthesis, decreasing the OM used for electron transfer. In addition, higher COD concentration was not conducive to electricity generation. EIS analysis demonstrated that higher OM concentration would increase Rct to hinder the transfer of electrons from bacteria to the electrode. Indirect and direct electron transfer were revealed by CV analysis for light and dark biofilm, respectively, and nanowires were also observed by SEM graphs, further revealing the differentiate performance. Microbial community analysis demonstrated Rhodopseudomonas was dominated in light and decreased in dark, but Geobacter increased apparently from light to dark, resulting in different power generation performance. The findings revealed the differentiated performance on electricity generation and pollutant removal by mixed culture of phototrophic bacteria in light or dark, which will improve the power generation from photo-microbial fuel cells.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Rodopseudomonas , Rodopseudomonas/metabolismo , Fotossíntese , Luz , Eletrodos , Biofilmes/crescimento & desenvolvimento , Análise da Demanda Biológica de Oxigênio , Transporte de Elétrons , Geobacter/metabolismo , Geobacter/fisiologia
3.
Chempluschem ; 89(8): e202400072, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38416561

RESUMO

Carbon dioxide can be relatively easily reduced to organic matter in a bioelectrochemical system (BES). However, due to insufficient reduction force from in-situ hydrogen evolution, it is difficult for nitrogen reduction. In this study, MoS2 was firstly used as an electrocatalyst for the simultaneous reduction of CO2 and N2 to produce microbial protein (MP) in a BES. Cell dry weight (CDW) could reach 0.81±0.04 g/L after 14 d operation at -0.7 V (vs. RHE), which was 108±3 % higher than that from non-catalyst control group (0.39±0.01 g/L). The produced protein had a better amino acid profile in the BES than that in a direct hydrogen system (DHS), particularly for proline (Pro). Besides, MoS2 promoted the growth of bacterial cell on an electrode and improved the biofilm extracellular electron transfer (EET) by microscopic observation and electrochemical characterization of MoS2 biocathode. The composition of the microbial community and the relative abundance of functional enzymes revealed that MoS2 as an electrocatalyst was beneficial for enriching Xanthobacter and enhancing CO2 and N2 reduction by electrical energy. These results demonstrated that an efficient strategy to improve MP production of BES is to use MoS2 as an electrocatalyst to shift amino acid profile and microbial community.


Assuntos
Dióxido de Carbono , Dissulfetos , Técnicas Eletroquímicas , Molibdênio , Molibdênio/química , Molibdênio/metabolismo , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Catálise , Ar , Proteínas de Bactérias/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Fontes de Energia Bioelétrica , Eletrodos
4.
Ying Yong Sheng Tai Xue Bao ; 34(9): 2481-2488, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37899115

RESUMO

The evaluation and optimization of landscape ecological pattern has important implications for the accurate improvement of forest quality and high-quality urban development in the Pearl River Delta urban agglomeration. Based on the "one map" data and digital elevation model data of forest resource management in 2021, we evaluated and optimized landscape ecological pattern of the Pearl River Delta urban agglomeration by morphological spatial pattern analysis and minimum cumulative resistance model. The results showed that there were 435861 patches in the Pearl River Delta urban agglomeration that could be used as ecological source area, covering an area of 7346.60 km2 and accounting for 13.4% of the Pearl River Delta area. Thirty patches were selected as the ecological source area of the study area by using the area and patch importance index, covering an area of 2792.59 km2 and accounting for 5.1% of the Pearl River Delta area. The overall natural environment of the Pearl River Delta urban agglomeration was excellent. The ecological resistance level was small. The peripheral ecological resistance was low. The core ecological resistance was high. There was still a large room for adjustment of stand types and landscape patterns, which should be optimized by adjusting the composition and spatial distribution of tree species. The ecological network of the Pearl River Delta urban agglomeration was optimized with 30 ecological sources, 103 key ecological corridors, and 95 ecological nodes. The improvement rates of the optimized probability of connectivity index and integral index of connectivity index were 297.5% and 695.1%, respectively. The optimization results could effectively connect the ecological sources and spread the ecological service functions of ecological sources.


Assuntos
Conservação dos Recursos Naturais , Rios , Florestas , Análise Espacial , China , Ecossistema , Cidades
5.
Bioresour Technol ; 379: 129026, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030417

RESUMO

In this study, the engineering-oriented three-dimensional (3D) bioanode concept was applied, demonstrating that spiral-stairs-like/rolled carbon felt (SCF/RCF) configurations achieved good performances in air-cathode microbial fuel cells (ACMFCs). With the 3D anodes, ACMFCs generated significantly higher power densities of 1535 mW/m3 (SCF) and 1800 mW/m3 (RCF), compared with that of a traditional flat carbon felt anode (FCF, 315 mW/m3). The coulombic efficiency of 15.39 % at SCF anode and 14.34 % at RCF anode also is higher than the 7.93 % at FCF anode. The 3D anode ACMFCs exhibited favorable removal of chemical oxygen demand (96 % of SCF and RCF) and total nitrogen (97 % of SCF, 99 % of RCF). Further results show that three-dimensional anode structures could enrich more electrode surface biomass and diversify the biofilm microbial communities for promoting bioelectroactivity, denitrification, and nitrification. These results demonstrate that three-dimensional anodes with active biofilm is a promising strategy for creating scalable MFCs-based wastewater treatment system.


Assuntos
Fontes de Energia Bioelétrica , Desnitrificação , Carbono , Fibra de Carbono , Eletricidade , Eletrodos , Nitrogênio
6.
Water Res ; 233: 119757, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822111

RESUMO

Water toxicity detection, as a valuable supplement to conventional water quality measurement, is an important method for evaluating water environmental quality standards. However, the toxicity of composite pollutants is more complicated due to their mixture effects. This study developed a novel, rapid and interference-resistant detection method for water toxicity based on an electrochemical biosensor using peak current from nitrite oxidation as a signal. Toxicants could weaken the characteristic peak current of nitrite to indicate the magnitude of toxicity. The proof-of-concept study was first conducted using a synthetic water sample containing trichloroacetic acid (TCAA), and then the results were compared with those of the traditional toxicity colorimetric method (CCK-8 kit) and laser confocal microscopy (CLSM). The accuracy of the biosensor was further verified with water samples containing individual pollutants such as Cd2+ (50-150 µg/L), Cr6+ (20-80 µg/L) mixture, triclosan (TCS; 0.1-1.0 µg/L) and TCAA (10-80 µg/L), or a mixture of the above. The viability of the sensor was further validated with the actual water sample from the Tuojiang River. The results demonstrated that although the concentration of a single conventional pollutant in water did not exceed the discharge standard for surface water, the comprehensive toxicity of natural water should not be ignored. This method could be a beneficial supplement to conventional water quality detection to understand the characteristics of the water, and thus contribute to the next stage of water treatment.


Assuntos
Técnicas Biossensoriais , Monitoramento Ambiental , Poluentes Químicos da Água , Biofilmes , Monitoramento Ambiental/métodos , Nitrificação , Rios/química , Ácido Tricloroacético/análise , Ácido Tricloroacético/toxicidade , Triclosan/análise , Triclosan/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , China
7.
Sci Total Environ ; 858(Pt 3): 159929, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356784

RESUMO

Nitrogen pollution is one of the main reasons for water eutrophication. The difficulty of nitrogen removal in low-carbon wastewater poses a huge potential threat to the ecological environment and human health. As a clean biological nitrogen removal process, solid-phase denitrification (SPD) was proposed for long-term operation of low-carbon wastewater. In this paper, the progress, hotspots, and challenges of the SPD process based on different solid carbon sources (SCSs) are reviewed. Compared with synthetic SCS and natural SCS, blended SCSs have more application potential and have achieved pilot-scale application. Differences in SCSs will lead to changes in the enrichment of hydrolytic microorganisms and hydrolytic genes, which indirectly affect denitrification performance. Moreover, the denitrification performance of the SPD process is also affected by the physical and chemical properties of SCSs, pH of wastewater, hydraulic retention time, filling ratio, and temperature. In addition, the strengthening of the SPD process is an inevitable trend. The strengthening measures including SCSs modification and coupled electrochemical technology are regarded as the current research hotspots. It is worth noting that the outbreak of the COVID-19 epidemic has led to the increase of disinfection by-products and antibiotics in wastewater, which makes the SPD process face challenges. Finally, this review proposes prospects to provide a theoretical basis for promoting the efficient application of the SPD process and coping with the challenge of the COVID-19 epidemic.


Assuntos
COVID-19 , Humanos , Carbono
8.
Sci Total Environ ; 856(Pt 1): 159082, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174696

RESUMO

Nitrate promotes anodic denitrification and fasts organic matter removal in microbial fuel cells (MFCs). However, it suffers from poor total nitrogen (TN) removal and current recovery. In this study, some novel electroactive nitrifying/denitrifying bacteria (ENDB) were introduced in a single chambered air-cathode MFC to investigate the performance of this device and the microbial community shift by adding nitrate. Results showed a similar disturbance in current output by adding nitrate during a short-term operation. However, a stable and reproducible current increase was achieved in the continuous experiment. A maximum current of 0.76 A m-3 and a maximum TN removal of >99 % were accomplished. The corresponding corrected coulombic efficiency was approximately 18 %. Under repeatable batches, a sharp decrease in chemical oxygen demand (COD) with feeding nitrate confirmed the temporary competition on electron donors through heterotrophic denitrification. The later current increase and nitrite detection occurring without metabolized COD could be considered evidence of electroactive anodic nitrification. The ENDB biofilm successfully coupled mixotrophic denitrification and electroactive anodic nitrification. It eventually promoted TN removal. In the process, genera Pseudoxanthomonas, Thauera, and Pseudomonas were enriched in the anodic ENDB biofilms. Cyclic voltammetry data confirmed the promotion of the electron transfer process by biofilms. The bacterial function predication revealed that the genes related to nitrogen removal and electron transfer were upregulated. Therefore, mixotrophic denitrification and electroactive anodic nitrification processes facilitated power recovery with the high efficiency of pollutant removal, finally ensuring water body security.


Assuntos
Desnitrificação , Nitrificação , Nitrogênio/metabolismo , Nitratos/metabolismo , Eletrodos , Bactérias/metabolismo , Óxidos de Nitrogênio/metabolismo
9.
Biosens Bioelectron ; 215: 114573, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35853327

RESUMO

Timely and sensitive detection of nitrite is of great significance for human health protection and water pollution treatment. However, many biosensors can only determine the comprehensive toxicity of the water, and there are few electroactive biofilm (EAB) sensors for the specific detection of pollutants. Biofilms formed by bacteria with specific functions can improve the specificity of nitrite identification by biosensors. This study developed a novel, rapidly responding, high sensitivity (958.6 µAµM-1cm-2), wide detection range and anti-interference electrochemical biosensor based on electroactive nitrite-oxidizing bacteria. The biosensor could accurately detect nitrite in the range of 0.3-100 mg/L within 3 min by the cyclic voltammetry (CV) method. The bioelectrode could perform stable detection of nitrite over 200 cycles. The specificity of the biosensor for detecting nitrite was demonstrated by the presence of nitrite oxidizing bacteria (NOB) and nitrite oxidase enzyme (NXR) on the electrode biofilm. The biosensor performed well in wetlands and rivers, with an RSD <14.8% in the detection of nitrite at low concentrations, and further revealed the nitrification occurrence. Our study provided a feasible way for the development of a highly sensitive, rapidly responding and stable electrochemical biosensor, which also exhibited potential applications for long-term detection of nitrite and assessment of ecological function in surface water (rivers, lakes, wetlands, marshes, etc.).


Assuntos
Técnicas Biossensoriais , Nitritos , Bactérias , Reatores Biológicos/microbiologia , Humanos , Oxirredução , Água
10.
Bioelectrochemistry ; 146: 108142, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35487143

RESUMO

In this work, a toxicity monitoring microbial system (TMMS) with a nitrifying biofilm as a sensing element and cathode oxygen reduction as an electrical signal was successfully constructed for trichloroacetaldehyde (TCAL) detection. The current and nitrification rate showed a linear relationship with TCAL concentration from 0 to 100 µg/L (R2current = 0.9892, R2nitrification = 0.9858), indicating that the target substrate concentration can be directly obtained from an electrical signal without further sample concentration. High-throughput sequencing revealed that the TMMS was composed of autotrophic/heterotrophic nitrifying and denitrifying microorganisms. Further analysis via a symbiotic relationship network demonstrated that unclassified_Comamonadaceae and unclassified_Xanthobacteraceae were the core nodes for maintaining the interaction between autotropic and heterotrophic nitrifying bacteria. Kyoto Encyclopedia of Genes and Genomes analysis showed that the electron transfer process primarily relied on ferredoxin and cytochromes under TCAL stress, and the abundance of functional enzymes involved in the process of nitrification was decreased, resulting in changes in electrical signal output. This work explored a visual signal sensor combined with electrochemistry and autotrophic/heterotrophic nitrification, which provided new insights into recognition and response mechanisms for microbial monitoring of toxic substances.


Assuntos
Desnitrificação , Nitrificação , Reatores Biológicos/microbiologia , Hidrato de Cloral/análogos & derivados , Nitrogênio
11.
Bioelectrochemistry ; 145: 108097, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35313237

RESUMO

Anodic ammonium oxidation mainly focuses on autotrophic process, and the removal combined with organic matter oxidation is still unclear in microbial electrolysis cell (MEC). Here, a stainless-steel tank is constructed as an MEC for anaerobic ammonium oxidation and organic matter removal. Results show that MEC increases ammonium oxidation from 3.83 ± 2.51% to 32.90 ± 3.39%, and the organic matter removal rises from 75.69 ± 0.59% to 92.12 ± 0.57%, and the energy consumption is only 0.80 ± 0.09 kWh kg-1N, indicating an energy-efficient approach for simultaneous ammonium and carbon removal. Cyclic voltammetry reveals two pairs of oxidative peaks (-0.4 V and + 0.6 V) which demonstrate the electrochemical activity of biofilms for organic matter and ammonium oxidation, respectively. 16S rRNA gene analysis clarifies the anodic biofilm mainly enriched by the genus of Azoarcus, Hydrogenophaga and Paracoccus. Further analysis indicates that anodic potential controls the community succession of heterotrophic and hydrogenotrophic denitrifying bacteria, and then regulates the nitrogen and carbon removal processes, which extend the insights of anodic anaerobic ammonium oxidation coupling to denitrification under organic conditions.


Assuntos
Compostos de Amônio , Nitrogênio , Compostos de Amônio/análise , Anaerobiose , Reatores Biológicos/microbiologia , Carbono , Desnitrificação , Oxirredução , RNA Ribossômico 16S/genética , Aço Inoxidável , Águas Residuárias/análise
12.
Biosens Bioelectron ; 206: 114146, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35272214

RESUMO

A highly sensitive electrochemical sensor for detecting low concentrations of heavy metals (Cd2+, Ni2+, Pb2+ and Cu2+) based on Geobacter-dominated biofilms was developed. The biosensor showed a high sensitivity for the determination of Cd2+ (109.7 µAµM-1cm-2) and the determination of Pb2+ (161.7 µAµM-1cm-2). The performance of three fitting models for biosensor response to heavy metal toxicity was investigated based on the relationship between total coulomb yield and heavy metal concentration. The full-area model (Equation a) provided the best fit, and the response times tended to be the fastest based on the peak current model (Equation c). Recovery methods were proposed to ensure the electrical activity of the biofilm for long-term monitoring. 16S rRNA gene sequence analysis showed that the most dominant genus in the anodic biofilm was Geobacter (44.1%-45.8%), indicating a stable community structure after continuous toxicity shock for 22 days. The confocal laser scanning microscope (CLSM) further proved the restorable and reusability of the biosensor. Thanks to the thin and electrically active Geobacter-dominated biofilms, it could be a good alternative biosensor for groundwater analysis etc. The results of this study contribute to the development of a highly sensitive and accurate biosensor with long-term usage towards on-site monitoring of heavy metals at low concentrations, improving the test performance of the biosensor for practical application.


Assuntos
Técnicas Biossensoriais , Geobacter , Metais Pesados , Biofilmes , Cádmio , Geobacter/genética , Chumbo , Metais Pesados/análise , Metais Pesados/toxicidade , RNA Ribossômico 16S/genética
13.
Sci Total Environ ; 826: 154178, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35240169

RESUMO

Real-time nitrite control in water is necessary for environmental safety and human health, and has triggered the research and development of novel detection methods. Previous studies have made great progress on enzyme-free and enzyme electrochemical sensors. However, enzyme-free sensors have low selectivity and a complex preparation process, and enzyme sensors have short lifetimes, and these issues need to be addressed. In this work, we proposed for the first time a highly specific and sensitive biofilm sensor based on nitrite-oxidizing bacteria (NOB) for the bio-electrochemical detection of nitrite in water. The mechanism of nitrite detection was attributed to the competition of oxygen between aerobic respiration of the NOB and the cathode oxygen reduction on the carbon felt electrode, resulting in a decrease in current. This decrease in current (ΔI) had a linear relationship with the nitrite concentration in the range of 0.1 to 1 mg L-1 and 1 to 10 mg L-1, which was corresponding to the sensitivities of 48.62 and 2.24 µA mM-1 cm-2, respectively. And the limit of detection (LOD) was calculated to be 0.033 mg L-1 (2.39 µM) with a signal-to-noise ratio of 3. Moreover, several common interfering ions had no effect on the nitrite detection owing to the functional microbial species (NOB) and weakly electrochemical behavior of electrode at the low potential of -0.1 V, showing high specificity for nitrite detection of biofilm sensor. Therefore, the actual nitrified wastewater was well detected by the biofilm sensor. In addition, allylthiourea (ATU) took good effect on the resistance of the influence of ammonia oxidizing bacteria (AOB) in the biofilm sensor, maintaining the high selectivity of biofilm sensor in case the biofilm sensor was fouled with AOB. The biofilm sensor in our work showed good selectivity, sensitivity and stability in long-term detection.


Assuntos
Betaproteobacteria , Nitritos , Amônia , Bactérias , Reatores Biológicos/microbiologia , Humanos , Oxirredução , Oxigênio , Água
14.
Environ Res ; 210: 112985, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35192804

RESUMO

Trichloroacetic acid (TCA), a toxic substance produced in the disinfection process of wastewater treatment plants, will accumulate in the receiving water. The detection of TCA in the water can achieve the purpose of early warning. However, currently there are few reports on microbial sensors used for TCA detection, and the characteristics of their microbial communities are still unclear. In this work, a toxicity monitoring microbial system (TMMS) with nitrifying biofilm as a sensing element and cathode oxygen reduction as a current signal was successfully constructed for TCA detection. The current and nitrification rate showed a linear relationship with low TCA concentration from 0 to 50 µg/L (R2current = 0.9892, R2nitrification = 0.9860), and high concentration range from 50 to 5000 µg/L (R2current = 0.9883, R2nitrification = 0.9721). High-throughput sequencing revealed that the TMMS was composed of autotrophic/heterotrophic nitrifying and denitrifying microorganisms. Further analysis via symbiotic relationship network demonstrated that Arenimonas and Hyphomicrobium were the core nodes for maintaining interaction between autotropic and heterotrophic nitrifying bacteria. Kyoto Encyclopedia of Genes and Genomes analysis showed that after adding TCA to TMMS, the carbon metabolism and the abundance of the tricarboxylic acid cycle pathway were reduced, and the activity of microorganisms was inhibited. TCA stress caused a low abundance of nitrifying and denitrifying functional enzymes, resulting in low oxygen consumption in the nitrification process, but more oxygen supply for cathode oxygen reduction. This work explored a novel sensor combined with electrochemistry and autotrophic/heterotrophic nitrification, which provided a new insight into the development of microbial monitoring of toxic substances.


Assuntos
Nitrificação , Ácido Tricloroacético , Biofilmes , Reatores Biológicos , Nitrogênio/metabolismo , Oxigênio , Água
15.
Bioelectrochemistry ; 144: 108044, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34974371

RESUMO

Microbial electrosynthesis is a promising technology for high-value added products generation from organic and inorganic waste. In this work, autotrophic dual-chamber microbial electrolysis cells (MECs) were set up for N2 fixation at -0.9 V vs Ag/AgCl (sat. KCl) cathodic potential under ambient conditions. Higher NH4+ production yield (average value of 0.35 µmol h-1 cm-2, normalized to cathode surface area) and higher faradaic efficiency (FE, 20.25%) were obtained with intermittent addition of N2 and CO2, while the yield and FE were only 0.018 µmol h-1 cm-2 and 4.21% in the absence of CO2. Furthermore, cyclic voltammograms (CV) explained the bioelectrochemical behavior of N2 reduction was coupled with CO2 reduction in the autotrophic MECs. Microbial community analysis and functional prediction in the cathodic chamber revealed that Xanthobacter and Hydrogenophaga played as producers for N2 and CO2 fixation and Pannonibacter acting as a decomposer for converting organic nitrogen to ammonium. This work not only provided an optional bioelectrocatalytic method for N2 fixation with negative CO2-emissions but also revealed the mechanism of simultaneous fixation of N2 and CO2 via Calvin cycle in autotrophic MECs.


Assuntos
Dióxido de Carbono
16.
Bioelectrochemistry ; 144: 107997, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34801809

RESUMO

Aerobic biocathodes are effective construct for the simultaneous nitrification and denitrification, but the disturbance of cathodic oxygen reduction on ammonia oxidation and denitrification remains unclear. In this study, we revealed the oxygen reduction peak at -0.4 V (versus silver/silver chloride) by cyclic voltammetry analysis at a cathode without a biofilm. The reduction peak, however, showed a right shift from -0.4 to -0.3 V for the biocathode, indicating that the aerobic biocathode could simultaneously perform traditional nitrification and cathode oxygen reduction. Therefore, different electrode potentials ranging from -0.5 to -0.1 V were designed for regulating the ammonia oxidation rate, and the results showed that the highest oxidation rate reached 3.08 mg/h/L at a potential of -0.2 V under a low-aeration rate of 5 mL/min. High-throughput sequencing showed that Nitrosomonas and Rhodococcus were the dominant nitrogen removal genera in the biocathode, and the abundance of Devosia was related to the interactions between the aeration rate and the electrode potential. Furthermore, the amoC and hao genes responded to aeration and electrode potential regulation, and -0.2 V was more suitable for promoting the denitrification process under low-aeration conditions. Therefore, these findings provided new insights on cathodic potential control for ammonia oxidation and nitrogen removal as well as for the regulation of microbial communities.


Assuntos
Desnitrificação
17.
Bioresour Technol ; 339: 125604, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34303104

RESUMO

Simultaneous nitrification/denitrification (SND) can efficiently deplete NH4+ by using air-exposed biocathode (AEB) in bioelectrochemical reactors. However, the fluctuation of wastewater adversely affects the functional biofilms and therefore the performance. In this work, four up-flow bioelectrochemical reactors (UBERs) with some novel inocula were investigated to improve domestic wastewater treatment. The UBERs exhibited favorable removal of chemical oxygen demand (COD, 95%), NH4+-N (99%), and total nitrogen (TN, 99%). The maximum of current (2.7 A/m3), power density (136 mW/m3) and coulombic efficiency (20.5%) were obtained. Cyclic voltammetry analysis showed all the electrodes were of diversified catalytic reactions. Illumina pyrosequencing showed the predominant Ignavibacterium, Thauera, Nitrosomonas, Geminicoccus and Nitrospira were in all electrodes, contributing functional biofilms performing SND, comammox, and bioelectrochemical reactions. FAPROTAX analysis confirmed twenty-one functional groups with obvious changes related to chemoheterotrophy, respiration/oxidation/denitrification of nitrite and nitrate. Comfortingly, such novel diversified consortia in UBERs enhance the microbial metabolisms to treat domestic wastewater.


Assuntos
Nitrificação , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Desnitrificação , Nitrogênio/análise
18.
Waste Manag ; 131: 61-71, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34107374

RESUMO

Leachates and landfill gas (LFG) are the major problems for closed landfills (CL) and cause significant threats to receiving waterbody and ambient air quality. In this study, a field pilot-scale CL with ex situ nitritation/in situ denitritation process was constructed and operated continuously under wide temperature variations. The effect of low temperature on leachate treatment, and LFG content was studied. Results showed that the combined process can efficiently remove nitrogen and organic matters from leachate, and change LFG content under low-temperature condition. In the ex situ nitritaion, maximum removal efficiencies of ammonia and chemical oxygen demand (COD) were over 99% and 85%, respectively. The loading rate of nitrogen and COD reached 0.5 kg N m-3 d-1 and 0.7 kg COD m-3 d-1, respectively. The inhibitions of free ammonia (FA) and free nitrous acid (FNA), and low temperature were the key factors affecting nitritation. With recirculating nitrified leachate, total oxidized nitrogen (TON) was completely reduced, and the refuse decomposition was accelerated. Denitritation was the main reaction responsible in the CL. Additionally, methane content was observed lowly at non-inhibitory TON loading rate of 5.8 ± 3.7 g N ton-1 TS d-1. This decrease was not caused by the increased of TON loading, but a carbon source competition by denitrificans. The estimated COD consumption and methane reduction were 55.0 kg d-1 by TON reduction, and 20 m3 d-1, respectively. Hence, this study served a potential strategy for postclosure care of landfills under low temperature variation.


Assuntos
Reatores Biológicos , Poluentes Químicos da Água , Nitritos/análise , Nitrogênio/análise , Temperatura , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 788: 147652, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34023598

RESUMO

Air-cathode microbial fuel cells (ACMFCs) can extract available electrons from the low C/N ratio wastewater (LCNW) for pollutant degradation and power generation. However, the multiple effects of operating parameters and their relationship between the performances and parameters are still lacking. In this study, several ACMFCs for simultaneous nitritation/denitritation (SND) and energy recovery were constructed and evaluated in terms of chemical oxygen demand (COD), NH4+-N, C/N ratio, phosphate buffer solution (PBS), and external resistance (Rext), and several derived parameters (e.g., organic loading rate (OLR), nitrogen loading rate (NLR)). Results indicated that ACMFCs could be used to treat LCNW successfully with high pollutant removal rates and sustainable current generation. Maximum removal efficiencies of 94% COD, 92% NH4+-N, and 92% total nitrogen (TN) were achieved. A maximum power density of 1400 mW m-2 and columbic efficiency of 69.2% were also obtained at a low C/N ratio of 1.7-2.6. Low C/N ratios promoted SND by balancing nitritation and denitritation. The microbial community and their predicated function results showed considerable nitrifiers and denitrificans were enriched in the ACMFCs, contributing to SND and power recovery. Further analyses showed that the NH4+-N could inhibit SND, but PBS and Rext had no obvious effects on this outcome. Co-occurrence network analysis demonstrated that power is positively correlated with COD and Rext; strong correlations between organic removal and COD, and between nitrogen removal and ammonia, conductivity, and C/N ratio were also noted. Overall, the appropriate control of such parameters is necessary to achieve efficient SND in ACMFCs for LCNW treatment.


Assuntos
Fontes de Energia Bioelétrica , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos , Desnitrificação , Eletrodos , Nitrogênio
20.
Sci Total Environ ; 748: 141379, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798873

RESUMO

Urine wastewater is used as fuel in microbial fuel cells to generate power for several applications. However, the knowledge on the removal efficiencies of pollutants and bacterial composition of electrode biofilm is still lacking. In this study, two air-exposed biocathode microbial fuel cells (AEB-MFCs) were constructed and some nitrogen-removing consortium were inoculated to fabricate multifunctional AEBs for urine treatment and energy recovery. Results demonstrated that urine wastewater can be degraded through one-pot degradation without positive aeration. The removal efficiencies of NH4+-N, total nitrogen and chemical oxygen demand reached 86.8% ± 1.5%, 62.7% ± 2.3%, and 52.7% ± 1.6% respectively. Cyclic voltammetry illustrated several catalytic activities related to C/N metabolism occurred in both biofilms and varied with the operation continuing in a single stable cycle. In addition, the community structure analysis revealed that many active microorganisms, including nitrogen-removing bacteria, heterotrophs, and electrochemically active bacteria were enriched in both electrodes, especially many halophilic nitrifiers/denitrifiers occupied in AEBs and directed the system toward the integrated pathways of halophilic nitrogen removal and energy recovery. This study presented a novel method for the energy conversion and effective degradation of urine, which can serve as a promising technology for urine wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Nitrificação , Biofilmes , Reatores Biológicos , Desnitrificação , Eletrodos , Nitrogênio/análise , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA