Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38874757

RESUMO

Globally, the circular efficiency of biomass resources has become a priority due to the depletion and negative environmental impacts of fossil fuels. This study aimed to quantify the atmosphere-dependent combustion of Ganoderma lucidum (GL) biomass and its thermodynamic and kinetic parameters toward enhancing its circularity and transformability characteristics. The GL combustion occurred in the three stages of moisture removal, volatile release, and coke combustion. Combustion performance characteristics were more favorable in the N2/O2 atmosphere than in the CO2/O2 atmosphere under the same heating rates. The rising heating rate facilitated the release of volatiles. According to the model-free methods of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose, the activation energies essential for the primary reaction were 283.09 kJ/mol and 288.28 kJ/mol in the N2/O2 atmosphere and 233.09 kJ/mol and 235.64 kJ/mol in the CO2/O2 atmosphere. The gaseous products of the GL combustion included CH4, H2O, C = O, CO, CO2, NH3, C = C, and C-O(H). Ash prepared in both atmospheres exhibited a tendency for slag formation, with oxy-fuel combustion lowering its risk. This study thus provides a theoretical and practical basis for transforming GL residues into a sustainable energy source.

2.
Sci Total Environ ; 879: 163259, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37011679

RESUMO

The widespread application of rare earth elements (REEs) has raised concerns about their potential release into the environment and subsequent ingestion by humans. Therefore, it is essential to evaluate the cytotoxicity of REEs. Here, we investigated the interactions between three typical REEs (La, Gd, and Yb) ions as well as their nanometer/µm-sized oxides and red blood cells (RBCs), a plausible contact target for nanoparticles when they enter the bloodstream. Hemolysis of REEs at 50-2000 µmol L-1 was examined to simulate their cytotoxicity under medical or occupational exposure. We found that the hemolysis due to the exposure of REEs was highly dependent on their concentration, and the cytotoxicity followed the order of La3+ > Gd3+ > Yb3+. The cytotoxicity of REE ions (REIs) is higher than REE oxides (REOs), while nanometer-sized REO caused more hemolysis than that µm-sized REO. The production of reactive oxygen species (ROS), ROS quenching experiment, as well as the detection of lipid peroxidation, confirmed that REEs causes cell membrane rupture by ROS-related chemical oxidation. In addition, we found that the formation of a protein corona on REEs increased the steric repulsion between REEs and cell membranes, hence mitigating the cytotoxicity of REEs. The theoretical simulation indicated the favorable interaction of REEs with phospholipids and proteins. Therefore, our findings provide a mechanistic explanation for the cytotoxicity of REEs to RBCs once they have entered the blood circulation system of organisms.


Assuntos
Metais Terras Raras , Coroa de Proteína , Humanos , Óxidos/toxicidade , Hemólise , Espécies Reativas de Oxigênio , Metais Terras Raras/toxicidade , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...