Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 660: 124302, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844150

RESUMO

Pulmonary fibrosis (PF) is a chronic, progressive, and fatal lung disease with a high mortality rate. Nintedanib, as a multi-tyrosine kinase inhibitor, is widely used as the first line drug for PF patients. However, only nintedanib oral formulations are used currently in clinic and show a low drug selectivity, significant first-pass effect and low bioavailability with 4.7%, thus limiting the clinical outcome of nintedanib. In this study, nintedanib was prepared in the form of nintedanib nanocrystalline (Nib-NC) and then encapsulated with hyaluronic acid (HA) to construct a nanocrystalline-in-adhesive delivery system Nib-NC@HA with high drug loading efficacy and pulmonary bio-adhesive properties, which could avoid the first-pass effects, increase the bioavailability and reduce the systemic side effects of nintedanib. After inhalation administration of Nib-NC@HA, due to the bio-adhesive properties of HA, Nib-NC@HA could prolong the retention time of drug in the lungs and inhibit the expression of inflammation associated factors such as IL-6, IL-1ß and TNF-α in lung tissue, reduce the release of pro-fibrotic growth factor, and improve the lung function, thus showing enhanced anti-fibrotic effect than Nib-NC. The results suggested that Nib-NC@HA is an efficient and optimal targeted bio-adhesive delivery system for the lungs to treat pulmonary fibrosis.

2.
Liver Int ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606676

RESUMO

BACKGROUND AND PURPOSE: Liver fibrosis is a wound-healing reaction which is the main cause of chronic liver diseases worldwide. The activated hepatic stellate cell (aHSC) is the main driving factor in the development of liver fibrosis. Inhibiting autophagy of aHSC can prevent the progression of liver fibrosis, but inhibiting autophagy of other liver cells has opposite effects. Hence, targeted inhibition of autophagy in aHSC is quite necessary for the treatment of liver fibrosis, which prompts us to explore the targeted delivery system of small molecule autophagy inhibitor hydroxychloroquine (HCQ) that can target aHSC and alleviate the liver fibrosis. METHODS: The delivery system of HCQ@retinol-liposome nanoparticles (HCQ@ROL-LNPs) targeting aHSC was constructed by the film dispersion and pH-gradient method. TGF-ß-induced HSC activation and thioacetamide (TAA)-induced liver fibrosis mice model were established, and the targeting ability and therapeutic effect of HCQ@ROL-LNPs in liver fibrosis were studied subsequently in vitro and in vivo. RESULTS: HCQ@ROL-LNPs have good homogeneity and stability. They inhibited the autophagy of aHSC selectively by HCQ and reduced the deposition of extracellular matrix (ECM) and the damage to other liver cells. Compared with the free HCQ and HCQ@LNPs, HCQ@ROL-LNPs had good targeting ability, showing enhanced therapeutic effect and low toxicity to other organs. CONCLUSION: Construction of HCQ@ROL-LNPs delivery system lays a theoretical and experimental foundation for the treatment of liver fibrosis and promotes the development of clinical therapeutic drugs for liver diseases.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37899504

RESUMO

Liver fibrosis is one of the most common and highly prevalent chronic liver diseases caused by multiple pathogenic factors, and there is still no effective therapeutic drugs up to now. The activated hepatic stellate cells (aHSCs) are the main executor in liver fibrosis, and the autophagy plays a key role in the proliferation and differentiation of aHSCs, which promotes the development of liver fibrosis. However, autophagy has the opposite effect on the different kinds of liver cells in the development of liver fibrosis, and the clinical treatment has been limited by the poor selectivity and inefficient drug delivery to aHSCs. Therefore, in this study, a liposome (Lip) and exosome (Exo) two-membrane hybrid nanobiomimetic delivery system HCQ@VA-Lip-Exo was designed, which was modified by vitamin A (VA) to target the aHSCs and carried the autophagy inhibitor hydroxychloroquine (HCQ). The experimental results in vitro and in vivo revealed that the constructed aHSC-targeted hybrid delivery system HCQ@VA-Lip-Exo combined with the benefits of HCQ and exosomes derived from bone marrow mesenchymal stem cells. HCQ@VA-Lip-Exo had good aHSC-targeted delivery ability, effective autophagy inhibition, and synergistical anti-liver fibrosis performance, thus reducing the production and deposition of the extracellular matrix to inhibit the liver fibrosis. This combined strategy provided a potential idea for the construction and clinical application of a two-membrane hybrid delivery system as an effective targeted therapy of liver fibrosis.

4.
Adv Healthc Mater ; 12(32): e2302094, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37827986

RESUMO

Gene therapy based on miRNAs has broad application prospects in the treatment of tumors. However, due to degradation and ineffective release during intracellular transport, current gene delivery vectors used for miRNAs limited their actual transfection efficiency. This study develops a novel nonviral vector PEI-SPDP-Man (PSM) that can simultaneously target cellular uptake pathways and intracellular responsive release for miR-34a. PSM is synthesized by connected mannitol (Man) to branched polyethylenimine (PEI) using a disulfide bond. The prepared PSM/miR-34a gene delivery system can induce and enter to tumor cells through caveolae-mediated endocytosis to reduce the degradation of miR-34a in lysosomes. The disulfide bond is sensed at high concentration of glutathione (GSH) in the tumor cells and miR-34a is released, thereby reducing the expression of Bcl-2 and CD44 to suppress the proliferation and invasion of tumor cells. In vitro and in vivo experiments show that through the targeted cellular uptake and the efficient release of miR-34a, an effective antitumor and antimetastasis profiles for the treatment of orthotopic triple negative breast cancer (TNBC) are achieved. This strategy of controlling intracellular transport pathways by targeting cellular uptake pathways in the gene therapy is an approach that could be developed for highly effective cancer therapy.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Polímeros , Cavéolas/metabolismo , Cavéolas/patologia , MicroRNAs/metabolismo , Técnicas de Transferência de Genes , Endocitose , Dissulfetos , Proliferação de Células
5.
Nanotechnology ; 34(33)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37130510

RESUMO

Acute lung injury (ALI) can be induced by various injury factors, which is closely related to the inflammatory reaction and cellular ferroptosis reported recently. Glutathione peroxidase (GPX4) palys an important role in the inflammatory reaction, which also is the core regulatory protein of ferroptosis. Up-regulation of GPX4 can be helpful to inhibit the cellular ferroptosis and inflammatory reaction to treat ALI. mPEI/pGPX4 gene therapeutic system based on mannitol-modified polyethyleneimine (mPEI) was constructed. Compared with PEI/pGPX4 nanoparticles using commoditized gene vector PEI 25k, mPEI/pGPX4 nanoparticles achieved caveolae-mediated endocytosis and improved the gene therapeutic effect. mPEI/pGPX4 nanoparticles could up-regulate the gene expression of GPX4, inhibit inflammatory reaction and the cellular ferroptosis, thereby alleviating the ALIin vitroandin vivo. The finding indicated that gene therapy with pGPX4 is a potential therapeutic system for the effective treatment of ALI.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Nanopartículas , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/farmacologia , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/terapia
6.
Nat Prod Res ; : 1-9, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067218

RESUMO

Four new polyhydroxylated steroidal saponins, parisverticillatosides A-D (1-4), together with four known spirostanol saponins (5-8) were isolated from the roots of Paris verticillata. Their structures were elucidated on the basis of extensive spectroscopic analysis and chemical evidences. The discovery of the new compounds 1-4 extended the diversity and complexity of this spirostanol saponin family. The saponins 5 and 6 exhibited cytotoxicities against two human glioma cell lines.

7.
Int J Pharm ; 636: 122821, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36914017

RESUMO

Breast cancer has become the malignant tumor with the largest incidence, especially the drug resistant triple negative breast cancer (TNBC). The combination therapeutic system can play a better role in resisting drug resistant TNBC. In this study, dopamine and tumor targeted folic acid modified dopamine were synthesized as carrier materials to construct melanin-like tumor targeted combination therapeutic system. The optimized nanoparticles of CPT/Fe@PDA-FA10 with efficient loading of camptothecin and iron was achieved, which showed tumor targeted delivery ability, pH sensitive controlled release, effective photothermal conversion performance and excellent anti-tumor efficacy in vitro and in vivo. CPT/Fe@PDA-FA10 plus laser could significantly kill the drug resistant tumor cells, inhibit the growth of the orthotopic drug resistant triple negative breast cancer through apoptosis/ferroptosis/photothermal treatment, and had no significant side effects on the main tissues and organs. This strategy provided a new idea for the construction and clinical application of triple-combination therapeutic system as effective treatment for drug resistant triple negative breast cancer.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Dopamina , Linhagem Celular Tumoral , Camptotecina , Portadores de Fármacos/uso terapêutico
8.
Int J Pharm ; 635: 122755, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36801480

RESUMO

Bone metastatic cancer is the most common occurrence in breast cancer, and the treatment is also facing great challenges. MicroRNA-34a (miRNA-34a) is a promising anti-cancer miRNA for gene therapy to bone metastatic cancer patients. However, the lack of specificity to bone and low accumulation at the site of bone tumor remains the major challenge when used bone-associated tumor. To solve this problem, a bone-targeted vector for delivery of miR-34a to bone metastatic breast cancer was constructed by using the commonly used gene vector branched polyethylenimine 25 k (BPEI 25 k) as the skeleton and linking with alendronate (ALN) moieties for bone targeting group. The constructed gene delivery system PCA/miR-34a can efficiently prevent miR-34a from degradation during blood circulation and enhance the specific bone delivery and distribution. PCA/miR-34a nanoparticles can be uptake into tumor cells through clathrin and caveolae-mediated endocytosis, and directly regulate the expression of oncogenes, thus promoting tumor cell apoptosis and relieving bone tissue erosion. The results of experiments in vitro and in vivo confirmed that the constructed bone-targeted miRNA delivery system PCA/miR-34a can enhance the anti-tumor efficacy in bone metastatic cancer, and provide a potential strategy for gene therapy in bone metastatic cancer.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Neoplasias Ósseas/metabolismo , Apoptose/genética , Osso e Ossos/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
9.
Phytochemistry ; 207: 113577, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36587887

RESUMO

Paris polyphylla var. yunnanensis (Franch.) Hand.-Mazz. (Melanthiaceae), an important specie of the genus Paris, has long been in a traditional Chinese medicine (TCM) for a long time. This study aimed to isolate and identify the structures of bioactive saponins from the rhizomes of P. polyphylla var. yunnanensis and evaluate their cytotoxicity against BxPC-3, HepG2, U373 and SGC-7901 carcinoma cell lines. Seven previously undescribed and seven known saponins were identified, and Paris saponins VII (PSVII) showed significant cytotoxicity against the BxPC-3 cell line with IC50 values of 3.59 µM. Furthermore, flow cytometry, transmission electron microscopy and western-bolt analysis revealed that PSVII inhibited the proliferation of BxPC-3 cells and might be involved in inducing apoptosis and pyroptosis by activating caspase-3, -7 and caspase-1, respectively.


Assuntos
Antineoplásicos , Liliaceae , Melanthiaceae , Saponinas , Rizoma/química , Saponinas/farmacologia , Liliaceae/química , Melanthiaceae/química
10.
Nanotechnology ; 34(3)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36219885

RESUMO

The serious side effects of cisplatin hindered its clinical application and the nanotechnology might be the potential strategy to address the limitation. However, rapid clearance in the blood circulation and ineffective controlled drug release from nanocarriers hamper the therapeutic efficacy of the nano-delivery system. We constructed a tumor microenvironment and redox dual stimuli-responsive nano-delivery system PEG-c-(BPEI-SS-Pt) by cross-linking the disulfide-containing polymeric conjugate BPEI-SS-Pt with the dialdehyde group-modified PEG2000via Schiff base. After optimized the cross-linking time, 72 h was selected to get the nano-delivery system.1H NMR and drug release assays showed that under the acidic tumor microenvironment (pH 6.5-6.8), the Schiff base can be broken and detached the PEG cross-linked outer shells, displaying the capability to release the drugs with a sequential pH- and redox-responsive manner. Moreover, PEG-c-(BPEI-SS-Pt) showed more effective anti-tumor therapeutic efficacyin vivowith no significant side effects when compared with the drug of cisplatin used in the clinic. This strategy highlights a promising platform with the dual stimuli-responsive profile to achieve better therapeutic efficacy and minor side effects for platinum-based chemotherapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Microambiente Tumoral , Bases de Schiff , Nanopartículas/química , Polímeros/química , Sistemas de Liberação de Medicamentos , Oxirredução , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
11.
ACS Nano ; 16(5): 7409-7427, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35549164

RESUMO

Glioblastoma (GBM) is an invasive cancer with high mortality in central nervous system. Resistance to temozolomide (TMZ) and immunosuppressive microenvironment lead to low outcome of the standardized treatment for GBM. In this study, a 2-deoxy-d-glucose modified lipid polymer nanoparticle loaded with TMZ and siPD-L1 (TMZ/siPD-L1@GLPN/dsb) was prepared to reprogram the TMZ-resistant and immunosuppressive microenvironment in orthotopic GBM. TMZ/siPD-L1@GLPN/dsb simultaneously delivered a large amount of TMZ and siPD-L1 to the deep area of the orthotopic TMZ-resistant GBM tissue. By inhibiting PD-L1 protein expression, TMZ/siPD-L1@GLPN/dsb markedly augmented the percentage of CD3+CD8+IFN-γ+ cells (Teff cells) and reduced the percentage of CD4+CD25+FoxP3+ cells (Treg cells) in orthotopic TMZ-resistant GBM tissue, which enhanced T-cell mediated cytotoxicity on orthotopic TMZ-resistant GBM. Moreover, TMZ/siPD-L1@GLPN/dsb obviously augmented the sensitivity of orthotopic TMZ-resistant GBM to TMZ through decreasing the protein expression of O6-methyl-guanine-DNA methyltransferase (MGMT) in TMZ-resistant GBM cells. Thus, TMZ/siPD-L1@GLPN/dsb markedly restrained the growth of orthotopic TMZ-resistant GBM and extended the survival time of orthotopic GBM rats through reversing a TMZ-resistant and immunosuppressive microenvironment. TMZ/siPD-L1@GLPN/dsb shows potential application to treat orthotopic TMZ-resistant GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Ratos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/genética , O(6)-Metilguanina-DNA Metiltransferase/genética , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Sistemas de Liberação de Fármacos por Nanopartículas
12.
Pharmacol Ther ; 234: 108117, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35077761

RESUMO

Hepatic fibrosis is a key pathological process of chronic liver diseases, caused by alcohol, toxic and aberrant energy metabolism. It progresses to cirrhosis or even hepatic carcinoma without effective treatment. Studies have shown that autophagy has important regulatory effects on hepatic stellate cells (HSCs) energy metabolism, and then affect the activation state of HSCs. Autophagy maintains hepatic energy homeostasis, and the dysregulation of autophagy can lead to the activation of HSCs and the occurrence and development of hepatic fibrosis. It is necessary to explore the mechanism of autophagy in energy metabolism-related hepatic fibrosis. Herein, the current study summarizes the regulating mechanisms of autophagy through different targets and signal pathways in energy metabolism-related hepatic fibrosis, and discusses the regulatory effect of autophagy by natural plant-derived, endogenous and synthetic compounds for the treatment of hepatic fibrosis. A better comprehension of autophagy in hepatic stellate cells energy metabolism-related hepatic fibrosis may provide effective intervention of hepatic fibrosis, explore the potential clinical strategies and promote the drug treatment of hepatic fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Autofagia , Metabolismo Energético , Fibrose , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/tratamento farmacológico
13.
Molecules ; 26(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770773

RESUMO

The genus Paris is an excellent source of steroidal saponins that exhibit various bioactivities. Paris mairei is a unique species and has been widely used as folk medicine in Southwest China for a long time. With the help of chemical methods and modern spectra analysis, five new steroidal saponins, pamaiosides A-E (1-5), along with five known steroidal saponins 6-10, were isolated from the rhizomes of Paris mairei. The cytotoxicity of all the new saponins was evaluated against human pancreatic adenocarcinoma PANC-1 and BxPC3 cell lines.


Assuntos
Melanthiaceae/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Rizoma/química , Saponinas/química , Saponinas/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fracionamento Químico , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Fitosteróis/química , Fitosteróis/isolamento & purificação , Fitosteróis/farmacologia , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Análise Espectral
14.
Chin J Nat Med ; 18(9): 714-720, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32928515

RESUMO

To study the biopharmaceutics characteristics of paris saponin VII (PSVII). The solubility of PSVII was evaluated by measurement of the equilibrium solubility in different solvents and media. The permeability of PSVII was evaluated by measuring the oil/water partition coefficient (lgPapp) and determining the apparent permeability coefficient (PCapp) on a mono-layer Caco-2 cell model. The effects of p-glycoprotein and multidrug resistance related protein 2 on PSVII transport in mono-layer Caco-2 cell model were further investigated. Finally, the small intestinal absorption of PSVII was investigated in rat. In solvents of different pH, the equilibrium solubility of PSVII was quite low, and the dose number of PSVII was larger than 1. The lgPapp of PSVII was less than 0. The apparent permeability coefficient [PCapp(AP-BL)] of PSVII in mono-layer Caco-2 cell model was less than 14.96 × 10-6 cm·s-1, and the efflux ratio of PSVII in mono-layer Caco-2 cell model was less than 1. The transport rate of PSVII in mono-layer Caco-2 cell model was not affected by the inhibitors of p-glycoprotein and multidrug resistance related protein 2. After oral administration, PSVII could be detected in rat intestinal contents, but could not be detected in the small intestinal mucosa. PSVII showed low solubility and permeability, which would result in low oral bioavailability in clinic. PSVII belonged to Class IV compound in biopharmaceutics classification system.


Assuntos
Saponinas/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Transporte Biológico , Células CACO-2 , Relação Dose-Resposta a Droga , Humanos , Concentração de Íons de Hidrogênio , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Permeabilidade , Ratos , Solubilidade
15.
Nanotechnology ; 31(32): 325101, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32325436

RESUMO

Polyethylenimine (PEI), a kind of cationic non-viral gene delivery vector, is capable of stable and efficient transgene expression for gene delivery. However, low transfection efficiency in vivo along with high toxicity limited the further application of gene therapy in the clinic. To enhance gene transfection performance and reduce cytotoxicity of polyethylenimine, branched polyethylenimine-derived cationic polymers BPEI25 k-man-S/L/M/H with different grafting degree with mannitol moieties were prepared and the transfection efficiency was evaluated. Among them, BPEI25 k-man-L showed the best transfection efficiency, lower toxicity, and significantly enhanced long-term systemic transgene expression for 96 h in vivo even at a single-dose administration. The results of cellular uptake mechanism and western-blot experiments revealed that the mannitol modification of BPEI25 k induced and up-regulated the phosphorylation of caveolin-1 and thus enhanced the caveolae-mediated cellular uptake. This class of gene delivery system highlights a paradigmatic approach for the development of novel and safe non-viral vectors for gene therapy.


Assuntos
Caveolina 1/metabolismo , Vetores Genéticos/administração & dosagem , Manitol/química , Polietilenoimina/química , Animais , Células COS , Chlorocebus aethiops , Técnicas de Transferência de Genes , Vetores Genéticos/química , Células HEK293 , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Transfecção
16.
Int J Pharm ; 580: 119190, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32151664

RESUMO

Cisplatin is one of the most widely used platinum-based anticancer chemotherapeutic drugs. However, its low solubility, serious side effects and the development of cisplatin resistance limit its further use in the clinic. Controlling the delivery and release of cisplatin at the targeted site efficiently is a meaningful way to overcome these undesirable side effects of cisplatin. Herein, a tumor targeted and stimuli responsive nano-delivery system for cisplatin was constructed using branched polyethyleneimine (BPEI) as the backbone, disulfide bond as the redox-responsive covalent linker and hyaluronic acid (HA) as targeting recognition unit which can bind selectively to the receptor of CD44, which is highly expressed on the A549 tumor cells. The cisplatin-polyethyleneimine conjugate BPEI-SS-Pt was prepared and the drug loading of cisplatin was up to 32.66 ± 0.06%. After optimized the coating weight ratio of HA and BPEI-SS-Pt, the nanoparticle delivery system HA-(BPEI-SS-Pt)-1/4 outperformed with smaller particle size of 159.0 ± 21.0 nm, narrow polydispersity index (PDI) of 0.069 ± 0.022 and higher cisplatin loading of 29.23 ± 0.18%, showing specific tumor-targeting ability and redox-responsive drug release manner. Moreover, for the treatment of cancer in vivo, it achieved more effective antitumor performance along with minor side effects and systemic toxicity compared with cisplatin which is of great significance for the chemotherapeutic drug in the clinic.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cisplatino/química , Cisplatino/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Nanomedicine (Lond) ; 15(9): 833-849, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32163008

RESUMO

Aim: To prepare pH-sensitive nanoparticle composed of alendronate (ALN) and poly(amidoamine) (PAMAM) to treat bone metastases of lung cancer. Methods: The solvent evaporation method was used to prepare docetaxel (DTX)-loaded ALN-PAMAM nanoparticles (DTX@ALN-PAMAM). Results: The in vitro results showed DTX@ALN-PAMAM significantly enhanced the anticancer activity of DTX and inhibited the formation of osteoclasts. DTX@ALN-PAMAM concentrated at bone metastasis site in mice, which resulted in the suppression of bone resorption, pain response and growth of bone metastases. Eventually, the therapeutic effect of DTX on bone metastases of lung cancer was obviously improved. Conclusion: ALN modified PAMAM nanoparticle could be an effective platform for the treatment of bone metastases of lung cancer.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Neoplasias Pulmonares , Nanopartículas , Alendronato , Animais , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Docetaxel , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Poliaminas
18.
J Nanobiotechnology ; 18(1): 26, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005170

RESUMO

BACKGROUND: Gene therapy remains a significant challenge due to lots of barriers limiting the genetic manipulation technologies. As for non-viral delivery vectors, they often suffer insufficient performance due to inadequate cellular uptake and gene degradation in endosome or lysosome. The importance of overcoming these conserved intracellular barriers is increasing as the delivery of genetic cargo. RESULTS: A surface-functionalized non-viral vector involving the biomimetic mannitol moiety is initiated, which can control the cellular uptake and promote the caveolae-mediated pathway and intracellular trafficking, thus avoiding acidic and enzymatic lysosomal degradation of loaded gene internalized by clathrin-mediated pathway. Different degrees of mannitol moiety are anchored onto the surface of the nanoparticles to form bio-inspired non-viral vectors and CaP-MA-40 exhibits remarkably high stability, negligible toxicity, and significantly enhanced transgene expression both in vitro and in vivo. CONCLUSIONS: This strategy highlights a paradigmatic approach to construct vectors that need precise intracellular delivery for innovative applications.


Assuntos
Fosfatos de Cálcio/química , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Nanopartículas/química , Transgenes , Cavéolas/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular , Clatrina/metabolismo , Endossomos/metabolismo , Regulação Viral da Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Lisossomos/metabolismo , Manitol/metabolismo , Transdução de Sinais , Propriedades de Superfície , Transdução Genética , Transfecção
19.
Nanomedicine ; 21: 102054, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310809

RESUMO

Bone is one of the prone metastatic sites of lung cancer. Osteoclast plays an important role in bone resorption and the growth of bone metastases of lung cancer. In order to treat bone metastases of lung cancer, we reported a docetaxel (DTX)-loaded nanoparticle, DTX@AHP, which could target dually at osteoclasts and bone metastatic tumor cells. The in vitro drug release from DTX@AHP exhibited pH and redox responsive characteristics. DTX@AHP displayed high binding affinity with bone matrix. In addition, DTX@AHP significantly inhibited the differentiation of RAW264.7 into osteoclast and effectively inhibited the proliferation of osteoclasts and tumor cells in in-vitro 3D bone metastases model of lung cancer. DTX@AHP could accumulate in bone metastases sites in vivo. Consequently, DTX@AHP not only markedly inhibited the growth of bone metastases of lung cancer but also reduced osteolysis in tumor-bearing mice. DTX@AHP exhibited great potential in the treatment of bone metastases of lung cancer.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Docetaxel/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas/administração & dosagem , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Proliferação de Células/efeitos dos fármacos , Docetaxel/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Nanopartículas/química , Metástase Neoplásica , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteólise/induzido quimicamente , Células RAW 264.7
20.
J Biomed Nanotechnol ; 15(8): 1654-1672, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31219018

RESUMO

Stimuli-responsive materials are promising paradigm applied to construct diagnostic and therapeutic intracellular controlled release vectors, while highlighting many challenges and opportunities. In this paper, six α-cyclodextrin-based supramolecular nanovectors were constructed and the efficacy of amine groups, stimuli-responsive profiles and endocytic mechanisms were investigated. The results indicated that the designed supermolecules can compact DNA to form stable complexes and display low cytotoxicity. Among them, PRPEI-2 with suitable PEI amine group exhibited enhanced transfecting performance, high dilution stability, nice serum compatibility, and good acid-responsive profiles to enable endosome escape, significantly higher than commercially available transfecting agent PEI25000, the most effective vector studied to date. The endocytic uptake mechanisms involved in the transfection was mainly through clathrin-mediated pathway, which is closely associated with and can be improved by endosome escape. Moreover, PRPEI-2/DNA polyplex can be effectively expressed in vivo even after 48 h via only single tail-vein injection, and the gene expression and main tissue distribution appeared in the testis, liver, brain and spleen. These excellent characteristics demonstrated that the supramolecular PRPEI-2 represents an excellent prospect as stimuli-responsive nanovectors for gene diagnosis and therapy.


Assuntos
Técnicas de Transferência de Genes , DNA , Endossomos , Polietilenoimina , Transfecção , alfa-Ciclodextrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...