Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 540, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822238

RESUMO

The citral-type is the most common chemotype in Cinnamomum bodinieri Levl (C. bodinieri), which has been widely used in the daily necessities, cosmetics, biomedicine, and aromatic areas due to their high citral content. Despite of this economic prospect, the possible gene-regulatory roles of citral biosynthesis in the same geographic environment remains unknown. In this study, the essential oils (EOs) of three citral type (B1, B2, B3) and one non-citral type (B0) varieties of C. bodinieri were identified by GC-MS after hydrodistillation extraction in July. 43 components more than 0.10% were identified in the EOs, mainly composed of monoterpenes (75.8-91.84%), and high content citral (80.63-86.33%) were identified in citral-type. Combined transcriptome and metabolite profiling analysis, plant-pathogen interaction(ko04626), MAPK signaling pathway-plant(ko04016), starch and sucrose metabolism(ko00500), plant hormone signal transduction(ko04075), terpenoid backbone biosynthesis (ko00900) and monoterpenoid biosynthesis (ko00902) pathways were enriched significantly. The gene expression of differential genes were linked to the monoterpene content, and the geraniol synthase (CbGES), alcohol dehydrogenase (CbADH), geraniol 8-hydroxylase-like (CbCYP76B6-like) and 8-hydroxygeraniol dehydrogenase (Cb10HGO) were upregulated in the citral-type, indicating that they were associated with high content of geraniol and citral. The activities of CbGES and CbADH in citral type were higher than in non-citral type, which was corroborated by enzyme-linked immunosorbent assay (ELISA). This study on the accumulation mechanism of citral provides a theoretical basis for the development of essential oil of C. bodinieri.


Assuntos
Monoterpenos Acíclicos , Cinnamomum , Perfilação da Expressão Gênica , Monoterpenos , Cinnamomum/metabolismo , Cinnamomum/genética , Monoterpenos Acíclicos/metabolismo , Monoterpenos/metabolismo , Transcriptoma , Óleos Voláteis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
2.
Stress Biol ; 3(1): 1, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-37676379

RESUMO

Light and phytohormone are external and internal cues that regulate plant growth and development throughout their life cycle. BBXs (B-box domain proteins) are a group of zinc finger proteins that not only directly govern the transcription of target genes but also associate with other factors to create a meticulous regulatory network to precisely regulate numerous aspects of growth and developmental processes in plants. Recent studies demonstrate that BBXs play pivotal roles in light-controlled plant growth and development. Besides, BBXs have been documented to regulate phytohormone-mediated physiological procedures. In this review, we summarize and highlight the multi-faced role of BBXs, with a focus in photomorphogenesis, photoperiodic flowering, shade avoidance, abiotic stress, and phytohormone-mediated growth and development in plant.

3.
Plant Cell Environ ; 46(11): 3558-3574, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37545348

RESUMO

Adequate distribution of mineral sulphur (S) nutrition to nodules mediated by sulphate transporters is crucial for nitrogen fixation in symbiosis establishment process. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we characterized the function of Early Senescent Nodule 2 (MtESN2), a gene crucial to nitrogen fixation in Medicago truncatula. Mutations in MtESN2 resulted in severe developmental and functional defects including dwarf shoots, early senescent nodules, and lower nitrogenase activity under symbiotic conditions compared to wild-type plants. MtESN2 encodes an M. truncatula sulphate transporter that is expressed only in roots and nodules, with the highest expression levels in the transition zone and nitrogen-fixing zone of nodules. MtESN2 exhibited sulphate transport activity when expressed in yeast. Immunolocalization analysis showed that MtESN2-yellow fluorescent protein fusion protein was localized to the plasma membranes of both uninfected and infected cells of nodules, where it might transport sulphate into both rhizobia-infected and uninfected cells within the nodules. Our results reveal an unreported sulphate transporter that contributes to effective symbiosis and prevents nodule early senescence in M. truncatula.


Assuntos
Medicago truncatula , Fixação de Nitrogênio , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Simbiose/genética , Sulfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Molecules ; 27(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36364183

RESUMO

Citral chemotypes Cinnamomum camphora (C. camphora) and Cinnamomum bodinieri (C. bodinieri) are promising industrial plants that contain abundant citral. For a more in-depth study, their significant biological effect, the chemical composition and antioxidant capacity of essential oils of citral-rich chemotype C. camphora and C. bodinieri (EOCC) were determined in the present study. The EOCC yield, obtained by hydro-distillation and analyzed by gas chromatography-mass spectrometry (GC-MS), ranged from 1.45-2.64%. Forty components more than 0.1% were identified and represented, mainly by a high content of neral (28.6-39.2%), geranial (31.8-54.1%), Z-isocitral (1.8-3.2%), E-isocitral (3.2-4.7%), geraniol (1.3-2.6%) and caryophyllene (0.6-2.4%). The antioxidant properties of EOCC were estimated by DPPH, ABTS and FRAP methods. As our results indicated, the antioxidant activity was significantly correlated to oxygenated monoterpenes. The variety of C. bodinieri (N7) presented the best antioxidant profile, given its highest inhibition of DPPH radical (IC50 = 6.887 ± 0.151 mg/mL) and ABTS radical scavenging activity (IC50 = 19.08 ± 0.02 mg/mL). To the best of our knowledge, more than 88% citral of C. bodinieri was investigated and the antioxidant properties described for the first time. Considering high essential oil yield, rich citral content and high antioxidant activity, the N7 variety will be a good candidate for pharmaceutical and cosmetic development of an improved variety.


Assuntos
Cinnamomum camphora , Cinnamomum , Óleos Voláteis , Cinnamomum camphora/química , Óleos Voláteis/química , Antioxidantes/farmacologia
5.
Plant Cell ; 34(6): 2266-2285, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35294019

RESUMO

B-box containing proteins (BBXs) integrate light and various hormonal signals to regulate plant growth and development. Here, we demonstrate that the photomorphogenic repressors BBX28 and BBX29 positively regulate brassinosteroid (BR) signaling in Arabidopsis thaliana seedlings. Treatment with the BR brassinolide stabilized BBX28 and BBX29, which partially depended on BR INSENSITIVE1 (BRI1) and BIN2. bbx28 bbx29 seedlings exhibited larger cotyledon aperture than the wild-type when treated with brassinazole in the dark, which partially suppressed the closed cotyledons of brassinazole resistant 1-1D (bzr1-1D). Consistently, overexpressing BBX28 and BBX29 partially rescued the short hypocotyls of bri1-5 and bin2-1 in both the dark and light, while the loss-of-function of BBX28 and BBX29 partially suppressed the long hypocotyls of bzr1-1D in the light. BBX28 and BBX29 physically interacted with BR-ENHANCED EXPRESSION1 (BEE1), BEE2, and BEE3 and enhanced their binding to and activation of their target genes. Moreover, BBX28 and BBX29 as well as BEE1, BEE2, and BEE3 increased BZR1 accumulation to promote the BR signaling pathway. Therefore, both BBX28 and BBX29 interact with BEE1, BEE2, and BEE3 to orchestrate light and BR signaling by facilitating the transcriptional activity of BEE target genes. Our study provides insights into the pivotal roles of BBX28 and BBX29 as signal integrators in ensuring normal seedling development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Regulação da Expressão Gênica de Plantas/genética , Proteínas Quinases/metabolismo , Plântula/genética , Plântula/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Front Genet ; 11: 598714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281883

RESUMO

The roots, bark, and leaves of Cinnamomum camphora are rich in essential oils, which mainly comprised monoterpenes and sesquiterpenes. Although the essential oils obtained from C. camphora have been widely used in pharmaceutical, medicinal, perfume, and food industries, the molecular mechanisms underlying terpenoid biosynthesis are poorly understood. To address this lack of knowledge, we performed transcriptome analysis to investigate the key regulatory genes involved in terpenoid biosynthesis in C. camphora. High-oil-yield trees of linalool type and low-oil-yield trees were used to assemble a de novo transcriptome of C. camphora. A total of 121,285 unigenes were assembled, and the total length, average length, N50, and GC content of unigenes were 87,869,987, 724, 1,063, and 41.1%, respectively. Comparison of the transcriptome profiles of linalool-type C. camphora with trees of low oil yield resulted in a total of 3,689 differentially expressed unigenes, among them 31 candidate genes had annotations associated with metabolism of terpenoids and polyketides, including four in the monoterpenoid biosynthesis pathway and three in the terpenoid backbone biosynthesis pathway. Collectively, this genome-wide transcriptome provides a valuable tool for future identification of genes related to essential oil biosynthesis. Additionally, the identification of a cohort of genes in the biosynthetic pathways of terpenoids provides a theoretical basis for metabolic engineering of essential oils in C. camphora.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...