Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Phys Chem Chem Phys ; 26(20): 14651-14663, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38743154

RESUMO

H2O in flue gas causes the deactivation of V2O5/TiO2 catalysts for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. Developing water resistance requires understanding the theoretical mechanism of H2O impact on the catalysts. The aim of this work was to clarify the adsorption process of H2O and the deactivation mechanism induced by H2O through density functional theory (DFT). The process of H2O adsorption was studied based on a modeled V2O5/TiO2 catalyst surface. It was found that H2O had a strong interaction with exposed titanium atoms. Water adsorption on the catalyst surface significantly alters the electronic structure of VOx sites, transforming Lewis acid sites into Brønsted acid sites. Exposed titanium sites contribute to the decrease of Lewis acidity via adsorbed water. Ab initio thermodynamic calculations show that H2O adsorption on V2O5/TiO2 is stable at low coverage but less favorable at high coverage. Adsorption of NH3 is the most critical step for the SCR of NOx, and the adsorption of H2O can hinder this process. The H2O coverage below 15% of adsorption sites could enhance the NH3 adsorption rate and have a limited effect on the acidity, while higher coverage impeded the adsorption ability of VOx sites. This work provided electron-scale insight into the adsorption impact of H2O on the surface of V2O5/TiO2 catalysts, presented thermodynamic analysis of the adsorption of H2O and NH3, paving the way for the exploration of V2O5/TiO2 catalysts with improved water resistance.

2.
Mar Pollut Bull ; 203: 116475, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761680

RESUMO

As marine resources and transportation develop, oil spill incidents are increasing, endangering marine ecosystems and human lives. Rapidly and accurately identifying marine oil spill is of utmost importance in protecting marine ecosystems. Marine oil spill detection methods based on deep learning and computer vision have the great potential significantly enhance detection efficiency and accuracy, but their performance is often limited by the scarcity of real oil spill samples, posing a challenging to train a precise detection model. This study introduces a detection method specifically designed for scenarios with limited sample sizes. First, the small sample dataset of marine oil spill taken by Landsat-8 satellite is used as the training set. Then, a single image generative adversarial network (SinGAN) capable of training with a single oil spill image is constructed for expanding the dataset, generating diverse marine oil spill samples with different shapes. Second, a YOLO-v8 model is pretrained via the method of transfer learning and then trained with dataset before and after augmentation separately for real-time and efficient oil spill detection. Experimental results have demonstrated that the YOLO-v8 model, trained on an expanded dataset, exhibits notable enhancements in recall, precision, and average precision, with improvements of 12.3 %, 6.3 %, and 11.3 % respectively, compared to the unexpanded dataset. It reveals that our marine oil spill detection model based on YOLO-v8 exhibits leading or comparable performance in terms of recall, precision, and AP metrics. The data augmentation technique based on SinGAN contributes to the performance of other popular object detection algorithms as well.

3.
Curr Med Chem ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659264

RESUMO

BACKGROUND: Glycans constitute the primary components of proteins that regulate key carcinogenic processes in cancer progression. This study investigated the significance of O-glycan synthesis in the pathogenesis, outcome, and therapy of pancreatic cancer (PC). METHODS: Transcriptomic data and clinical prognostic information of PC were acquired via TCGA and GEO databases. CSA database was used to obtain single-cell data of PC. The O-glycan biosynthesis signaling pathway and its related genes were acquired via the MSigDB platform. The nonnegative matrix factorization (NMF) clustering was utilized to construct the O-glycan biosynthesis-associated molecular subtypes in PC. The LASSO and Cox regression were utilized to build the prognostic prediction model. We utilized real-time quantitative PCR (qRT-PCR) to verify the expressed levels of model genes. Single-cell analysis was utilized to investigate the levels of target genes and O-glycan biosynthesis signaling pathway in the PC tumour microenvironment. RESULTS: We obtained 30 genes related to O-glycan biosynthesis, among which 15 were associated with the prognosis of PC. All PC samples were grouped into two distinct molecular subtypes associated with O-glycan biosynthesis: OGRGcluster C1 and OGRGcluster C2, and compared to OGRGcluster C1. PCs in OGRGcluster C2 had a more advanced clinical stage and pathological grade, worse prognosis, and more active O-glycan biosynthesis function. Immune analysis indicated that naïve B cell, CD8+ T cell, memory-activated CD4+ T cell, and monocytes displayed remarkably higher infiltration levels in OGRGcluster C1 while resting NK cell, macrophages M0, resting dendritic cell, activated dendritic cell, and neutrophils exhibited markedly higher infiltration levels in OGRGcluster C2. OGRGcluster C1 exhibited higher sensitivities to drugs, such as cisplatin, irinotecan, KRAS(G12C) inhibitor-12, oxaliplatin, paclitaxel, and sorafenib. Besides, we built the O-glycan biosynthesis-related prognostic model (including SPRR1B, COL17A1, and ECT2) with a good prediction performance. SPRR1B, COL17A1, and ECT2 were remarkably highly expressed in PC tissues and linked to a poor outcome. Single-cell analysis revealed that Oglycan biosynthesis was observed only in PC, and consistent with this, the target genes were significantly enriched in PC. CONCLUSION: We first constructed molecular subtypes and prognostic models related to O-glycan biosynthesis in PC. It is clear that O-glycan biosynthesis is related to the development, prognosis, immune microenvironment, and treatment of PC. This provides new strategies for stratification, diagnosis, and treatment of PC patients.

4.
Plants (Basel) ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337940

RESUMO

Brassinazole resistant (BZR) genes act downstream of the brassinosteroid signaling pathway regulating plant growth and development and participating in plant stress responses. However, the BZR gene family has not systematically been characterized in potato. We identified eight BZR genes in Solanum tuberosum, which were distributed among seven chromosomes unequally and were classified into three subgroups. Potato and tomato BZR proteins were shown to be closely related with high levels of similarity. The BZR gene family members in each subgroup contained similar conserved motifs. StBZR genes exhibited tissue-specific expression patterns, suggesting their functional differentiation during evolution. StBZR4, StBZR7, and StBZR8 were highly expressed under white light in microtubers. StBZR1 showed a progressive up-regulation from 0 to 6 h and a progressive down-regulation from 6 to 24 h after drought and salt stress. StBZR1, StBZR2, StBZR4, StBZR5, StBZR6, StBZR7 and StBZR8 were significantly induced from 0 to 3 h under BR treatment. This implied StBZR genes are involved in phytohormone and stress response signaling pathways. Our results provide a theoretical basis for understanding the functional mechanisms of BZR genes in potato.

5.
Animals (Basel) ; 14(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338123

RESUMO

The aim of our present study was to investigate the effects of Gln supplementation on liver inflammatory responses as well as protein synthesis and degradation in the muscle of LPS-challenged broilers. A total of 120 one-day-old male broiler chickens (Arbor Acres Plus) were randomly arranged in a 2 × 2 factorial design with five replicates per treatment and six broilers per replicate, containing two main factors: immune challenge (injected with LPS in a dose of 0 or 500 µg/kg of body weight) and dietary treatments (supplemented with 1.22% alanine or 1% Gln). After feeding with an alanine or Gln diet for 15 days, broilers were administrated an LPS or a saline injection at 16 and 21 days. The results showed that Gln supplementation alleviated the increased mRNA expressions of interleukin-6, interleukin-1ß, and tumor necrosis factor-α induced by LPS in liver. Moreover, the increased activity of aspartate aminotransferase combined with the decreased expression of glutaminase in muscle were observed following Gln addition. In addition, in comparison with the saline treatment, LPS challenge altered the signaling molecules' mRNA expressions associated with protein synthesis and degradation. However, Gln supplementation reversed the negative effects on protein synthesis and degradation in muscle of LPS-challenged broilers. Taken together, Gln supplementation had beneficial effects: alleviating inflammatory responses, promoting protein synthesis, and inhibiting protein degradation of LPS-challenged broilers.

6.
Cancer Rep (Hoboken) ; 7(2): e1990, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38389400

RESUMO

BACKGROUND: Pancreatic cancer is one of the most aggressive human malignancies. Previous research has shown that periostin (POSTN) promotes pancreatic cancer cell proliferation, migration, and invasion. Further, POSTN is involved in tumor microenvironment remodeling during tumor progression. However, the relationship between POSTN expression, immune cell infiltration, and the efficacy of immunotherapy in pancreatic cancer is unclear. METHODS: We conducted a comprehensive evaluation of POSTN differential expression, examining mRNA and protein levels. To gather data, we utilized various databases including gene expression profiling interactive analysis 2 (GEPIA2), gene expression omnibus (GEO), and the human protein atlas (HPA). To investigate the correlation between POSTN expression and clinical characteristics, we analyzed data from the Kaplan-Meier plotter database and clinical data sourced from the cancer genome atlas (TCGA). Furthermore, we performed gene ontology (GO) analysis, Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA). Additionally, we explored the relationship between POSTN expression and immune cell infiltration, as well as the immunophenoscore (IPS), by leveraging the cancer immunome atlas (TCIA) database. Lastly, we examined the tumor mutational burden (TMB) in pancreatic cancer in relation to POSTN expression. RESULTS: When compared with healthy pancreatic tissues, pancreatic cancer tissues displayed significantly higher levels of POSTN, which was indicative of a worse prognosis. POSTN expression was closely associated with extracellular matrix (ECM) organization, ECM-receptor interaction, and focal adhesion by GO, KEGG pathway, and GSEA analyses. Higher expression of POSTN was associated with increased infiltration of M2 macrophages. Additionally, increased IPS was linked to lower POSTN expression. IPS scores for CTLA4, PD-1/PDL1, and CTLA4/PD-1/PDL1 immune checkpoint inhibitors were also higher in the POSTN-low expression group, suggesting that lower expression of POSTN is associated with a better outcome with checkpoint inhibitor treatment. CONCLUSION: POSTN is related to pancreatic cancer prognosis, and may influence immune cell infiltration. High expression of POSTN is predicted to correlate with lower sensitivity to immunotherapy with checkpoint inhibitors in pancreatic cancer.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Antígeno CTLA-4 , Neoplasias Pancreáticas/genética , Periostina , Prognóstico , Receptor de Morte Celular Programada 1 , Microambiente Tumoral/genética
7.
Int J Biol Macromol ; 259(Pt 1): 129135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176493

RESUMO

Improving the yield of polysaccharides extracted from Schisandra sphenanthera is a major challenge in traditional Chinese medicinal plants. In this study, we investigated the potential of Lactobacillus plantarum CICC 23121-assisted fermentation as an extraction tool for S. sphenanthera polysaccharides (SSP). We observed that 11.12 ± 0.28 % of polysaccharides were extracted from S. sphenanthera using strain CICC 23121 -assisted fermentation (F-SSP), which was 53.38 % higher than that using hot water extraction (NF-SSP). The optimized parameters were a fermentation time of 15.5 h, substrate concentration of 4 %, and inoculum size of 3 %. Lactic acid produced by strain CICC 23121 increased the release of intracellular polysaccharides by breaking down cell walls. Compared to NF-SSP, F-SSP contained higher and lower total carbohydrate and protein contents, respectively, and its monosaccharide composition was the same as that of NF-SSP; however, their distributions were different. F-SSP had a higher molecular weight, better aqueous stability, and looser surface morphology, and strain CICC 23121-assisted fermentation did not change the molecular structure of SSP. Both NF-SSP and F-SSP showed the potential to regulate human intestinal microflora. Our findings revealed that strain CICC 23121-assisted fermentation is an efficient method for extracting S. sphenanthera polysaccharides without affecting their physicochemical and bioactive properties.


Assuntos
Lactobacillus plantarum , Schisandra , Humanos , Schisandra/química , Fermentação , Frutas/química , Polissacarídeos/química
8.
Int J Biol Macromol ; 260(Pt 1): 129468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242412

RESUMO

This study investigated the possibility of sodium carboxymethyl celluloses (Na-CMC) in protecting the viability of lactic acid bacteria (LAB) against freeze-drying stress. 1 % concentration of Na-CMC with a 0.7 substitution degree and viscosity of 1500 to 3100 (MPa.s) was found to protect Lactobacillus delbrueckii subsp. bulgaricus CICC 6098 best, giving a high survival rate of 23.19 ± 0.88 %, high key enzymatic activities, and 28-day storage stability. Additionally, Na-CMC as cryoprotectant provided good protection for other 7 lactic acid bacterial strains subjected to freeze-drying. The highest survival rate was 48.79 ± 0.20 U/mg for ß-GAL, 2.75 ± 0.15 U/mg for Na+-K+-ATPase, and 2.73 ± 0.41 U/mg for Ca2+-Mg2+-ATPase as 48.48 ± 0.46 % for freeze-dried Pediococcus pentosaceus CICC 22228. It was Interesting to note that the presence of Na-CMC reduced the freezable water content of the lyophilized powders containing the tested strains through its hydroxyl group, and supplied micro-holes and fibers for protecting the integrated structure of LAB cell membrane and wall against the freezing damage. It is clear that addition of Na-CMC should be promising as a new cryoprotective agent available for processing the lyophilized stater cultures of LAB strains.


Assuntos
Lactobacillales , Lactobacillus delbrueckii , Crioprotetores/farmacologia , Crioprotetores/química , Carboximetilcelulose Sódica , Liofilização , Ácido Láctico , Sódio , Adenosina Trifosfatases
9.
J Dairy Sci ; 107(1): 123-140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37641256

RESUMO

This study aimed to investigate the symbiosis between Streptococcus thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. bulgaricus CICC 6047. In addition, the effect of their different inoculum ratios was determined, and comparison experiments of fermentation characteristics and storage stability of milk fermented by their monocultures and cocultures at optimal inoculum ratio were performed. We found the time to obtain pH 4.6 and ΔpH during storage varied among 6 inoculum ratios (1:1, 2:1, 10:1, 19:1, 50:1, 100:1). By the statistical model to evaluate the optimal ratio, the ratio of 19:1 was selected, which exhibited high acidification rate and low postacidification with pH values remaining between 4.2 and 4.4 after a 50-d storage. Among the 3 groups included in our analyses (i.e., the monocultures of S. thermophilus CICC 6038 [St] and Lb. bulgaricus CICC 6047 [Lb] and their cocultures [St+Lb] at 19:1), the coculture group showed higher acidification activity, improved rheological properties, richer typical volatile compounds, more desirable sensor quality after the fermentation process than the other 2 groups. However, the continuous accumulation of acetic acid during storage showed that acetic acid was more highly correlated with postacidification than d-lactic acid for the Lb group and St+Lb group. Our study emphasized the importance of selecting an appropriate bacterial consortium at the optimal inoculum ratio to achieve favorable fermentation performance and enhanced postacidification stability during storage.


Assuntos
Lactobacillus delbrueckii , Iogurte , Animais , Iogurte/microbiologia , Streptococcus thermophilus , Fermentação , Acetatos
10.
Adv Sci (Weinh) ; 11(4): e2305890, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039434

RESUMO

Biomaterials encounter considerable challenges in extensive bone defect regeneration. The amelioration of outcomes may be attainable through the orchestrated modulation of both innate and adaptive immunity. Silicon-hydroxyapatite, for instance, which solely focuses on regulating innate immunity, is inadequate for long-term bone regeneration. Herein, extra manganese (Mn)-doping is utilized for enhancing the osteogenic ability by mediating adaptive immunity. Intriguingly, Mn-doping engenders heightened recruitment of CD4+ T cells to the bone defect site, concurrently manifesting escalated T helper (Th) 2 polarization and an abatement in Th1 cell polarization. This consequential immune milieu yields a collaborative elevation of interleukin 4, secreted by Th2 cells, coupled with attenuated interferon gamma, secreted by Th1 cells. This orchestrated interplay distinctly fosters the osteogenesis of bone marrow stromal cells and effectuates consequential regeneration of the mandibular bone defect. The modulatory mechanism of Th1/Th2 balance lies primarily in the indispensable role of manganese superoxide dismutase (MnSOD) and the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK). In conclusion, this study highlights the transformative potential of Mn-doping in amplifying the osteogenic efficacy of silicon-hydroxyapatite nanowires by regulating T cell-mediated adaptive immunity via the MnSOD/AMPK pathway, thereby creating an anti-inflammatory milieu favorable for bone regeneration.


Assuntos
Nanofios , Osteogênese , Manganês/farmacologia , Silício/farmacologia , Durapatita/farmacologia , Proteínas Quinases Ativadas por AMP/farmacologia
11.
Int J Mol Sci ; 24(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958715

RESUMO

Persimmon is a fruit that contains sugars, vitamins, phenolic compounds, and various other nutrients. The aim of this study was to explore the structure of carboxymethylated persimmon polysaccharide (CM-PFP) and its interaction with the human gut microbiota. Carboxymethyl modification of the persimmon polysaccharide (PFP) increased both the Mw and Mn, enhanced dispersion stability, and decreased thermal stability. Both PFP and CM-PFP promoted the proliferation of Lactobacillus while inhibiting the proliferation of Staphylococcus aureus and Escherichia coli. In the simulated fecal fermentation, the pH of PFP- and CM-PFP-containing media decreased, the content of short-chain fatty acids increased, and the abundance of intestinal flora at the phylum and genus levels changed. The relative abundance of harmful intestinal bacteria was significantly reduced in both PFP and CM-PFP groups. Furthermore, it was found that CM-PFP was more easily metabolized than PFP, glucose, and fructo-oligosaccharide (FOS) and had a proliferation increase effect on Lactobacillus. Therefore, CM-PFP has a significant positive effect on both Lactobacillus proliferation and the human gut microbiota.


Assuntos
Diospyros , Microbioma Gastrointestinal , Humanos , Frutas/química , Diospyros/química , Polissacarídeos/química , Proliferação de Células
12.
Int J Biol Macromol ; 253(Pt 7): 127435, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844825

RESUMO

Because of the impact of petroleum-based polymers on environmental deterioration and the need for safe, efficient, and functional packaging films, a sodium alginate (SA)-based film incorporating a Schisandra chinensis extract (SCE)-natamycin (NA) complex was developed for the desired physical and functional properties. The incorporation of SCE-NA into SA-based films decreased the water vapor transmission rate (WVTR), moisture content (MC), and hydrophilicity of the films and improved their opacity, elongation at break (EAB), and thermal stability. Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray Diffraction (XRD) analyses showed that SA, SCE, and NA had positive interactions and compatibility. In addition, the antimicrobial activity analysis indicated that the SA-SCE-NA film-forming solutions had satisfactory antimicrobial activity against Staphylococcus aureus, Escherichia coli, Saccharomyces cerevisiae, and Aspergillus niger. SA-based composite films have been used to coat cucumbers and blueberries to extend their shelf life. Compared to the neat SA film, the shelf life of cucumbers treated with the SA-SCE-NA film increased by 6 days compared to that in the untreated group at 28 °C, and the shelf life of blueberries increased by 5 days at 4 °C, revealing its potential utilization in food packaging.


Assuntos
Anti-Infecciosos , Schisandra , Alginatos/química , Natamicina , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Difração de Raios X , Embalagem de Alimentos/métodos
13.
Sensors (Basel) ; 23(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836964

RESUMO

Recently, deep learning models have been widely applied to modulation recognition, and they have become a hot topic due to their excellent end-to-end learning capabilities. However, current methods are mostly based on uni-modal inputs, which suffer from incomplete information and local optimization. To complement the advantages of different modalities, we focus on the multi-modal fusion method. Therefore, we introduce an iterative dual-scale attentional fusion (iDAF) method to integrate multimodal data. Firstly, two feature maps with different receptive field sizes are constructed using local and global embedding layers. Secondly, the feature inputs are iterated into the iterative dual-channel attention module (iDCAM), where the two branches capture the details of high-level features and the global weights of each modal channel, respectively. The iDAF not only extracts the recognition characteristics of each of the specific domains, but also complements the strengths of different modalities to obtain a fruitful view. Our iDAF achieves a recognition accuracy of 93.5% at 10 dB and 0.6232 at full signal-to-noise ratio (SNR). The comparative experiments and ablation studies effectively demonstrate the effectiveness and superiority of the iDAF.

14.
Molecules ; 28(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687118

RESUMO

The ethylenediamine-N,N'-disuccinic acid (EDDS) was utilized to form Fe-EDDS complex to activate peroxymonosulfate (PMS) in the electrochemical (EC) co-catalytic system for effective oxidation of naphthenic acids (NAs) under neutral pH conditions. 1-adamantanecarboxylic acid (ACA) was used as a model compound to represent NAs, which are persistent pollutants that are abundantly present in oil and gas field wastewater. The ACA degradation rate was significantly enhanced in the EC/PMS/Fe(III)-EDDS system (96.6%) compared to that of the EC/PMS/Fe(III) system (65.4%). The addition of EDDS led to the formation of a stable complex of Fe-EDDS under neutral pH conditions, which effectively promoted the redox cycle of Fe(III)-EDDS/Fe(II)-EDDS to activate PMS to generate oxidative species for ACA degradation. The results of quenching and chemical probe experiments, as well as electron paramagnetic resonance (EPR) analysis, identified significant contributions of •OH, 1O2, and SO4•- in the removal of ACA. The ACA degradation pathways were revealed based on the results of high resolution mass spectrometry analysis and calculation of the Fukui index. The presence of anions, such as NO3-, Cl-, and HCO3-, as well as humic acids, induced nonsignificant influence on the ACA degradation, indicating the robustness of the current system for applications in authentic scenarios. Overall results indicated the EC/PMS/Fe(III)-EDDS system is a promising strategy for the practical treatment of NAs in oil and gas field wastewater.

15.
Front Pharmacol ; 14: 1244752, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745080

RESUMO

Background: The extremely malignant tumour known as pancreatic cancer (PC) lacks efficient prognostic markers and treatment strategies. The microbiome is crucial to how cancer develops and responds to treatment. Our study was conducted in order to better understand how PC patients' microbiomes influence their outcome, tumour microenvironment, and responsiveness to immunotherapy. Methods: We integrated transcriptome and microbiome data of PC and used univariable Cox regression and Kaplan-Meier method for screening the prognostic microbes. Then intratumor microbiome-derived subtypes were identified using consensus clustering. We utilized LASSO and Cox regression to build the microbe-related model for predicting the prognosis of PC, and utilized eight algorithms to assess the immune microenvironment feature. The OncoPredict package was utilized to predict drug treatment response. We utilized qRT-PCR to verify gene expression and single-cell analysis to reveal the composition of PC tumour microenvironment. Results: We obtained a total of 26 prognostic genera in PC. And PC samples were divided into two microbiome-related subtypes: Mcluster A and B. Compared with Mcluster A, patients in Mcluster B had a worse prognosis and higher TNM stage and pathological grade. Immune analysis revealed that neutrophils, regulatory T cell, CD8+ T cell, macrophages M1 and M2, cancer associated fibroblasts, myeloid dendritic cell, and activated mast cell had remarkably higher infiltrated levels within the tumour microenvironment of Mcluster B. Patients in Mcluster A were more likely to benefit from CTLA-4 blockers and were highly sensitive to 5-fluorouracil, cisplatin, gemcitabine, irinotecan, oxaliplatin, and epirubicin. Moreover, we built a microbe-derived model to assess the outcome. The ROC curves showed that the microbe-related model has good predictive performance. The expression of LAMA3 and LIPH was markedly increased within pancreatic tumour tissues and was linked to advanced stage and poor prognosis. Single-cell analysis indicated that besides cancer cells, the tumour microenvironment of PC was also rich in monocytes/macrophages, endothelial cells, and fibroblasts. LIPH and LAMA3 exhibited relatively higher expression in cancer cells and neutrophils. Conclusion: The intratumor microbiome-derived subtypes and signature in PC were first established, and our study provided novel perspectives on PC prognostic indicators and treatment options.

16.
Front Microbiol ; 14: 1154768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529324

RESUMO

Real-time monitoring of microbial dynamics during fermentation is essential for wine quality control. This study developed a method that combines the fluorescent dye propidium monoazide (PMA) with CELL-qPCR, which can distinguish between dead and live microbes for Lactiplantibacillus plantarum. This method could detect the quantity of microbes efficiently and rapidly without DNA extraction during wine fermentation. The results showed that (1) the PMA-CELL-qPCR enumeration method developed for L. plantarum was optimized for PMA treatment concentration, PMA detection sensitivity and multiple conditions of sample pretreatment in wine environment, and the optimized method can accurately quantify 104-108 CFU/mL of the target strain (L. plantarum) in multiple matrices; (2) when the concentration of dead bacteria in the system is 104 times higher than the concentration of live bacteria, there is an error of 0.5-1 lg CFU/mL in the detection results. The optimized sample pretreatment method in wine can effectively reduce the inhibitory components in the qPCR reaction system; (3) the optimized PMA-CELL-qPCR method was used to monitor the dynamic changes of L. plantarum during the fermentation of Cabernet Sauvignon wine, and the results were consistent with the plate counting method. In conclusion, the live bacteria quantification method developed in this study for PMA-CELL-qPCR in L. plantarum wines is accurate in quantification and simple in operation, and can be used as a means to accurately monitor microbial dynamics in wine and other fruit wines.

17.
J Agric Food Chem ; 71(22): 8589-8601, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37233984

RESUMO

This study aimed to construct a natural peptide-based emulsion gel (PG) using small peptides (∼2.2 kDa) by mild enzymatic hydrolysis of buckwheat proteins. The obtained PG presented a porous and tight texture and solid-gel viscoelasticity compared with its parent protein-based emulsion gel. Meanwhile, it exhibited good resistance against heating and freeze-thawing. Furthermore, peptide-oil interaction analysis revealed that the gel matrix was enhanced by the hydrophobic aggregation between peptides and oil molecules, H-bonding interaction of peptide molecules, and peptide-oil aggregate repulsion force. Finally, in vitro intestinal digestion experiments demonstrated that PG could embed and pH-responsively release curcumin in the gastrointestinal tract at a release rate of 53.9%. The findings unfold promising opportunities for using natural PG in a range of applications relying on large proteins or other synthesized molecules.


Assuntos
Fagopyrum , Géis/química , Emulsões/química , Curcumina/química , Fagopyrum/química , Peptídeos/química , Proteínas de Plantas/química , Viscosidade , Elasticidade , Temperatura
18.
Foods ; 12(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107472

RESUMO

The aim of this study was to investigate the influence of bovine serum albumin (BSA) on the Lactobacillus-strain-mediated removal of benzo[a]pyrene (BaP). A combination of 0.5 mg/mL of BSA with 1.0 × 1010 CFU/mL bacterial cells had a removal of 49.61% BaP for strain 121, while a combination of 0.4 mg/mL of BSA with 1.0 × 1010 CFU/mL bacterial cells had a removal of 66.09% BaP for strain ML32. The results indicated that the binding of BaP to Lactobacillus-BSA was stable. BSA maintains Lactobacillus activity and BaP removal in the gastrointestinal environment. Heat and ultrasonic treatment of BSA reduced the BaP-binding ability of Lactobacillus-BSA. With the addition of BSA, the surface properties of the two strains affected BaP binding. The Fourier-transform infrared (FTIR) data demonstrated that O-H, N-H, C=O, and P=O groups were involved in the binding of BaP to Lactobacillus-BSA. Scanning electron microscopy (SEM) results revealed that the morphology of Lactobacillus-BSA bound to BaP was maintained. The adsorption of BaP by Lactobacillus-BSA was appropriately described by the pseudo-second-order kinetic model and Freundlich isotherm model. BSA enhances the affinity between the bacterial cells and BaP.

19.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37104726

RESUMO

The present study aimed to investigate the effect of glutamine (Gln) addition on the damage of porcine intestinal epithelial cells (IPEC-J2) induced by heat stress (HS). IPEC-J2 cultured in logarithmic growth period in vitro were firstly exposed to 42 °C for 0.5, 1, 2, 4, 6, 8, 10, 12, and 24 h for cell viability and cultured with 1, 2, 4, 6, 8, or 10 mmol Gln per L of culture media for heat shock protein 70 (HSP70) expression to determine the optimal disposal strategy (HS, 42 °C for 12 h and HSP70 expression, 6 mmol/L Gln treatment for 24 h). Then IPEC-J2 cells were divided into three groups: control group (Con, cultured at 37 °C), HS group (HS, cultured at 42 °C for 12 h), and glutamine group (Gln+HS, cultured at 42 °C for 12 h combined with 6 mmol/L Gln treatment for 24 h). The results showed that HS treatment for 12 h significantly decreased the cell viability of IPEC-J2 (P < 0.05) and 6 mmol/L Gln treatment for 12 h increased HSP70 expression (P < 0.05). HS treatment increased the permeability of IPEC-J2, evidenced by the increased fluorescent yellow flux rates (P < 0.05) and the decreased transepithelial electrical resistance (P < 0.05). Moreover, the downregulated protein expression of occludin, claudin-1, and zonula occludens-1 was observed in HS group (P < 0.05), but Gln addition alleviated the negative effects on permeability and the integrity of intestinal mucosal barrier induced by HS (P < 0.05). In addition, HS resulted in the elevations in HSP70 expression, cell apoptosis, cytoplasmic cytochrome c potential expression, and the protein expressions of apoptosis-related factors (apoptotic protease-activating factor-1, cysteinyl aspartate-specific proteinase-3, and cysteinyl aspartate-specific proteinase-9) (P < 0.05); however, the reductions in mitochondrial membrane potential expression and B-cell lymphoma-2 expression were induced by HS (P < 0.05). But Gln treatment attenuated HS-induced adverse effects mentioned above (P < 0.05). Taken together, Gln treatment exhibited protective effects in protecting IPEC-J2 from cell apoptosis and the damaged integrity of epithelial mucosal barrier induced by HS, which may be associated with the mitochondrial apoptosis pathway mediated by HSP70.


It has been demonstrated that heat stress (HS) induced damages of the intestinal epithelial cell membrane and tight junction, which ultimately compromises intestinal integrity and increases intestinal permeability and leads to the reduced growth performance and the increased morbidity and mortality. However, glutamine (Gln) contributes to rescuing the phenotype of intestinal barrier dysfunction through decreasing intestinal permeability, regulating the gut tight junction proteins under HS conditions, enhancing the viability, and attenuating cell apoptosis in porcine enterocytes suffered from stress treatment. In addition, it was reported that Gln administration increased the protein expression of intestinal heat shock protein 70 (HSP70), which may play a regulatory role in cellular apoptosis within IPEC-J2 cells. Therefore, we hypothesized that Gln might contribute to alleviating HS-induced damage of porcine intestinal epithelium via inhibiting the mitochondrial apoptosis pathway mediated by HSP70. The results showed that Gln addition alleviated the negative effects on permeability and the integrity of intestinal mucosal barrier induced by HS. In addition, Gln treatment reversed the elevations in HSP70 expression, cell apoptosis, cytoplasmic cytochrome c potential expression, and the protein expressions of apoptosis-related factors (apoptotic protease-activating factor-1, cysteinyl aspartate-specific proteinase-3, and cysteinyl aspartate-specific proteinase-9) induced by HS, and resulted in an increase in mitochondrial membrane potential expression and B-cell lymphoma-2 expression. Taken together, Gln treatment exhibited protective effects in protecting IPEC-J2 from cell apoptosis and the damaged integrity of epithelial mucosal barrier induced by HS, which could be associated with the mitochondrial apoptosis pathway mediated by HSP70.


Assuntos
Ácido Aspártico , Glutamina , Animais , Suínos , Glutamina/farmacologia , Glutamina/metabolismo , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Mucosa Intestinal/metabolismo , Células Epiteliais/metabolismo , Resposta ao Choque Térmico , Apoptose
20.
Artigo em Inglês | MEDLINE | ID: mdl-37018601

RESUMO

With the rapid progress of deepfake techniques in recent years, facial video forgery can generate highly deceptive video content and bring severe security threats. And detection of such forgery videos is much more urgent and challenging. Most existing detection methods treat the problem as a vanilla binary classification problem. In this article, the problem is treated as a special fine-grained classification problem since the differences between fake and real faces are very subtle. It is observed that most existing face forgery methods left some common artifacts in the spatial domain and time domain, including generative defects in the spatial domain and interframe inconsistencies in the time domain. And a spatial-temporal model is proposed which has two components for capturing spatial and temporal forgery traces from a global perspective, respectively. The two components are designed using a novel long-distance attention mechanism. One component of the spatial domain is used to capture artifacts in a single frame, and the other component of the time domain is used to capture artifacts in consecutive frames. They generate attention maps in the form of patches. The attention method has a broader vision which contributes to better assembling global information and extracting local statistic information. Finally, the attention maps are used to guide the network to focus on pivotal parts of the face, just like other fine-grained classification methods. The experimental results on different public datasets demonstrate that the proposed method achieves state-of-the-art performance, and the proposed long-distance attention method can effectively capture pivotal parts for face forgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...