Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Vis Exp ; (185)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35876559

RESUMO

An ongoing clinical trial, Autoimmunity Screening for Kids (ASK), is the first screening study in the general population for type 1 diabetes (T1D) and celiac disease in the United States. With the coronavirus disease 2019 (COVID-19) pandemic, the epidemiology of COVID-19 in the general population and knowledge about the association between COVID-19 infection and T1D development are urgently needed. The currently standard screening method of the radio-binding assay (RBA) has met two great challenges: low efficiency with a single assay format and low disease specificity with a large proportion of low-affinity antibodies generated in screening. With the platform of the multiplex electrochemiluminescence (ECL) assay we established previously, a novel 6-Plex ECL assay was developed that combines, in a single well, all four islet autoantibodies (IAbs) to insulin, glutamic acid decarboxylase (GAD65), insulinoma antigen 2 (IA-2), and Zinc transporter 8 (ZnT8) for T1D, transglutaminase autoantibodies (TGA) for celiac disease, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain (RBD) antibodies for COVID-19. The assay was validated in blind using 880 samples from the ASK study, including 325 positive samples and 555 all antibody-negative samples, and compared with the standard RBAs and a single ECL assay. With the advantages of high efficiency, low cost, and low serum volume, this assay has been accepted as the primary screening tool for the ASK study.


Assuntos
COVID-19 , Doença Celíaca , Diabetes Mellitus Tipo 1 , Autoanticorpos , COVID-19/diagnóstico , Doença Celíaca/diagnóstico , Doença Celíaca/epidemiologia , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiologia , Glutamato Descarboxilase , Humanos , SARS-CoV-2 , Sensibilidade e Especificidade
2.
J Invest Dermatol ; 142(2): 390-401, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34293351

RESUMO

Psoriasis is a chronic immune-mediated disease characterized by excessive proliferation of epidermal keratinocytes and increased immune cell infiltration to the skin. Although it is well-known that psoriasis pathogenesis is driven by aberrant production of proinflammatory cytokines, the mechanisms underlying the imbalance between proinflammatory and anti-inflammatory cytokine expression are incompletely understood. In this study, we report that the transcriptional coregulators CtBP1 and 2 can transactivate a common set of proinflammatory genes both in the skin of imiquimod-induced mouse psoriasis model and in human keratinocytes and macrophages stimulated by imiquimod. We find that mice overexpressing CtBP1 in epidermal keratinocytes display severe skin inflammation phenotypes with increased expression of T helper type 1 and T helper type 17 cytokines. We also find that the expression of CtBPs and CtBP-target genes is elevated both in human psoriatic lesions and in the mouse imiquimod psoriasis model. Moreover, we were able to show that topical treatment with a peptidic inhibitor of CtBP effectively suppresses the CtBP-regulated proinflammatory gene expression and thus attenuates psoriatic inflammation in the imiquimod mouse model. Together, our findings suggest to our knowledge previously unreported strategies for therapeutic modulation of the immune response in inflammatory skin diseases.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Psoríase/tratamento farmacológico , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Células HaCaT , Humanos , Imiquimode/imunologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/patologia , Camundongos , Camundongos Transgênicos , Psoríase/genética , Psoríase/imunologia , Psoríase/patologia , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/imunologia
3.
Int J Biol Sci ; 16(7): 1107-1120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174788

RESUMO

Traumatic brain injury (TBI) induces an acute inflammatory response in the central nervous system that involves both resident and peripheral immune cells. The ensuing chronic neuroinflammation causes cell death and tissue damage and may contribute to neurodegeneration. The molecular mechanisms involved in the maintenance of this chronic inflammation state remain underexplored. C-terminal binding protein (CtBP) 1 and 2 are transcriptional coregulators that repress diverse cellular processes. Unexpectedly, we find that the CtBPs can transactivate a common set of proinflammatory genes both in lipopolysaccharide-activated microglia, astrocytes and macrophages, and in a mouse model of the mild form of TBI. We also find that the expression of these genes is markedly enhanced by a single mild injury in both brain and peripheral blood leukocytes in a severity- and time-dependent manner. Moreover, we were able to demonstrate that specific inhibitors of the CtBPs effectively suppress the expression of the CtBP target genes and thus improve neurological outcome in mice receiving single and repeated mild TBIs. This discovery suggests new avenues for therapeutic modulation of the inflammatory response to brain injury.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Proteínas Correpressoras/antagonistas & inibidores , Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Microglia/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos
4.
Am J Transl Res ; 11(3): 1374-1388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972168

RESUMO

The activation of the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway has been found to play a critical role in many inflammatory diseases by controlling the expression of many cytokines. However, this pathway's role in the pathological process of intervertebral disc degeneration (IDD) has not been reported to date. In the present study, we found universal activation of the TLR4/NF-κB signaling pathway and elevated levels of pro-inflammatory cytokines in IDD patients. The in vitro analyses in human nucleus pulposus cells (hNPC) and annulus fibrosus cells (hAFC) also indicated that Lipopolysaccharide (LPS) treatment could activate TLR4/NF-κB signaling and induce pro-inflammatory cytokine levels. By comparing the results of two microRNA (miRNA)-based microarrays, we identified 15 miRNAs that were dysregulated in both IDD tissues and LPS-treated cells. Of these miRNAs, the most prominently up-regulated was miR-625-5p, which was predicted to bind to the three prime untranslated region (3'-UTR) of collagen type I alpha 1 (COL1A1). In vitro overexpression or down-regulation of miR-625-5p was able to repress or induce the expression of COL1A1, respectively. The in vitro analyses showed that treatment with LPS, recombinant IL-6 or TNF-α could induce miR-625-5p levels but decrease COL1A1 expression. In contrast, the treatments with their corresponding inhibitors, CLI095, siltuximab and D2E7, respectively, resulted in the exact opposite effects. Taken together, our results suggest that activation of the TLR4/NF-κB signaling pathway induces pro-inflammatory cytokines, which further up-regulates the expression of miR-625-5p, resulting in the down-regulation of COL1A1 and eventually contributing to the pathological process of IDD.

5.
J Pathol ; 248(4): 464-475, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30945288

RESUMO

Inflammation is well known as an important driver of the initiation of colitis-associated cancer (CAC). Some cytokines, such as IL-6 and TNF-α can activate expression of the oncogene c-Myc (MYC) and regulate its downstream effects. Cullin-RING E3 Ligases (CRLs) are emerging as master regulators controlling tumorigenesis. Here, we demonstrate that two cullin genes, CUL4A and CUL4B, but not other members, are specifically overexpressed in CAC tumour samples and positively correlate with levels of the proinflammatory cytokines IL-1ß and IL-6. In vitro experiments revealed that the transcription factor c-Myc can specifically activate the expression of CUL4A and CUL4B by binding to a conserved site (CACGTG) located in their promoters. Additionally, we found that both CUL4A and CUL4B can form an E3 complex with DNA damage-binding protein 1 (DDB1) and DDB1-CUL4-associated factor 4 (DCAF4). In vitro and in vivo ubiquitination analyses indicate that CRL4DCAF4 E3 ligase specifically directs degradation of ST7 (suppression of tumorigenicity 7). Overexpression of c-Myc in human colon epithelial cells resulted in the accumulation of CUL4A, CUL4B and DCAF4, but degradation of ST7. In contrast, knockdown of c-Myc, CUL4A or CUL4B in the colon adenocarcinoma cell line HT29 caused accumulation of ST7 and inhibition of cell proliferation, colony formation ability and in vivo tumour growth. Collectively, our results provide in vitro and in vivo evidence that c-Myc regulates CRL4DCAF4 E3 ligase activity to mediate ubiquitination of ST7, whose presence is physiologically essential for CAC tumorigenesis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Adenocarcinoma/metabolismo , Colite/metabolismo , Neoplasias do Colo/metabolismo , Lesões Pré-Cancerosas/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenocarcinoma/patologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Colite/patologia , Neoplasias do Colo/patologia , Proteínas Culina/metabolismo , Feminino , Células HT29 , Humanos , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Lesões Pré-Cancerosas/patologia , Ubiquitinação , Regulação para Cima
6.
Mol Oncol ; 12(8): 1358-1373, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29879296

RESUMO

The carboxyl-terminal binding proteins (CtBP) are transcriptional corepressors that regulate the expression of multiple epithelial-specific and pro-apoptotic genes. Overexpression of CtBP occurs in many human cancers where they promote the epithelial-to-mesenchymal transition, stem cell-like features, and cell survival, while knockdown of CtBP in tumor cells results in p53-independent apoptosis. CtBPs are recruited to their target genes by binding to a conserved PXDLS peptide motif present in multiple DNA-binding transcription factors. Disrupting the interaction between CtBP and its transcription factor partners may be a means of altering CtBP-mediated transcriptional repression and a potential approach for cancer therapies. However, small molecules targeting protein-protein interactions have traditionally been difficult to identify. In this study, we took advantage of the fact that CtBP binds to a conserved peptide motif to explore the feasibility of using peptides containing the PXDLS motif fused to cell-penetrating peptides (CPP) to inhibit CtBP function. We demonstrate that these peptides disrupt the ability of CtBP to interact with its protein partner, E1A, in an AlphaScreen assay. Moreover, these peptides can enter both lung carcinoma and melanoma cells, disrupt the interaction between CtBP and a transcription factor partner, and inhibit CtBP-mediated transcriptional repression. Finally, the constitutive expression of one such peptide, Pep1-E1A-WT, in a melanoma cell line reverses CtBP-mediated oncogenic phenotypes including proliferation, migration, and sphere formation and limits tumor growth in vivo. Together, our results suggest that CPP-fused PXDLS-containing peptides can potentially be developed into a research tool or therapeutic agent targeting CtBP-mediated transcriptional events in various biological pathways.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Peptídeos Penetradores de Células/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Peptídeos/farmacologia , Ativação Transcricional/efeitos dos fármacos , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Peptídeos/química , Peptídeos/genética , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
7.
Mol Ther Nucleic Acids ; 10: 254-268, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499938

RESUMO

Cullins, critical members of the cullin-RING ubiquitin ligases (CRLs), are often aberrantly expressed in different cancers. However, the underlying mechanisms regarding aberrant expression of these cullins and the specific substrates of CRLs in different cancers are mostly unknown. Here, we demonstrate that overexpressed CUL4B in human osteosarcoma cells forms an E3 complex with DNA damage binding protein 1 (DDB1) and DDB1- and CUL4-associated factor 13 (DCAF13). In vitro and in vivo analyses indicated that the CRL4BDCAF13 E3 ligase specifically recognized the tumor suppressor PTEN (phosphatase and tensin homolog deleted on chromosome 10) for degradation, and disruption of this E3 ligase resulted in PTEN accumulation. Further analyses indicated that miR-300 directly targeted the 3' UTR of CUL4B, and DNA hypermethylation of a CpG island in the miR-300 promoter region contributed to the downregulation of miR-300. Interestingly, ectopic expression of miR-300 or treatment with 5-AZA-2'-deoxycytidine, a DNA methylation inhibitor, decreased the stability of CRL4BDCAF13 E3 ligase and reduced PTEN ubiquitination. By applying in vitro screening to identify small molecules that specifically inhibit CUL4B-DDB1 interaction, we found that TSC01131 could greatly inhibit osteosarcoma cell growth and could disrupt the stability of the CRL4BDCAF13 E3 ligase. Collectively, our findings shed new light on the molecular mechanism of CUL4B function and might also provide a new avenue for osteosarcoma therapy.

8.
Mol Oncol ; 12(4): 476-494, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29377600

RESUMO

Cullin 4B, a member of the Cullins, which serve as scaffolds to facilitate the assembly of E3 ligase complexes, is aberrantly expressed in many cancers, including osteosarcoma. Recently, we observed that CUL4B forms the CRL4BDCAF11 E3 ligase, which specifically ubiquitinates and degrades the cyclin-dependent kinase (CDK) inhibitor p21Cip1 in human osteosarcoma cells. However, the underlying mechanisms regarding the aberrant expression of CUL4B and the upstream members of this signaling pathway are mostly unknown. In this study, we demonstrate that nuclear factor kappaB (NF-κB) is a direct modulator of CUL4B expression. The CUL4B promoter is responsive to several NF-κB subunits, including RelA, RelB, and c-Rel, but not to p50 or p52. Additional studies reveal that the tumor necrosis factor alpha (TNF-α)/NF-κB axis pathway is activated in human osteosarcoma cells. This activation causes both CUL4B and NF-κB subunits to become abundant in the nucleus of human osteosarcoma cells. The down-regulation of individual genes, including TNFR1, RelA, RelB, c-Rel, and CUL4B, or pairs of them, including TNFR1 + RelA, TNFR1 + RelB, TNFR1 + c-Rel, and RelA+CUL4B, has similar effects on cell growth inhibition, colony formation, cell invasion, and in vivo tumor formation, whereas the overexpression of CUL4B in these knockdown cells significantly reverses their phenotypes. The inhibition of the TNF-α/NF-κB pathway greatly attenuates CRL4BDCAF11 E3 ligase activity and causes the accumulation of p21Cip1 , thereby leading to cell cycle arrest at the S phase. Taken together, our results support a model in which the activation of the TNF-α/NF-κB axis contributes to an increase in CRL4BDCAF11 activity and a decrease in p21Cip1 protein levels, thereby controlling cell cycle progression in human osteosarcoma cells.


Assuntos
Neoplasias Ósseas/metabolismo , Proteínas de Transporte/metabolismo , Ciclo Celular , Modelos Biológicos , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Osteossarcoma/metabolismo , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , NF-kappa B/genética , Proteínas de Neoplasias/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Proteína 7 de Ligação ao Retinoblastoma/genética , Fator de Necrose Tumoral alfa/genética , Complexos Ubiquitina-Proteína Ligase
9.
Mol Cell Biol ; 38(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263158

RESUMO

A tightly controlled cellular deoxyribonucleotide (deoxynucleoside triphosphate [dNTP]) pool is critical for maintenance of genome integrity. One mode of dNTP pool regulation is through subcellular localization of ribonucleotide reductase (RNR), the enzyme that catalyzes the rate-limiting step of dNTP biosynthesis. In Saccharomyces cerevisiae, the RNR small subunit, Rnr2-Rnr4, is localized to the nucleus, whereas the large subunit, Rnr1, is cytoplasmic. As cells enter S phase or encounter DNA damage, Rnr2-Rnr4 relocalizes to the cytoplasm to form an active holoenzyme complex with Rnr1. Although the DNA damage-induced relocalization requires the checkpoint kinases Mec1-Rad53-Dun1, the S-phase-specific redistribution does not. Here, we report that the S-phase cyclin-cyclin-dependent kinase (CDK) complex Clb6-Cdc28 controls Rnr2-Rnr4 relocalization in S phase. Rnr2 contains a consensus CDK site and exhibits Clb6-dependent phosphorylation in S phase. Deletion of CLB6 or removal of the CDK site results in an increased association of Rnr2 with its nuclear anchor Wtm1, nuclear retention of Rnr2-Rnr4, and an enhanced sensitivity to the RNR inhibitor hydroxyurea. Thus, we propose that Rnr2-Rnr4 redistribution in S phase is triggered by Clb6-Cdc28-mediated phosphorylation of Rnr2, which disrupts the Rnr2-Wtm1 interaction and promotes the release of Rnr2-Rnr4 from the nucleus.


Assuntos
Proteína Quinase CDC28 de Saccharomyces cerevisiae/metabolismo , Ciclina B/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Proteína Quinase CDC28 de Saccharomyces cerevisiae/análise , Ciclina B/análise , Fosforilação , Transporte Proteico , Ribonucleosídeo Difosfato Redutase/análise , Ribonucleotídeo Redutases/análise , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise
10.
Int J Biol Sci ; 13(8): 1038-1050, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28924385

RESUMO

MicroRNAs (miRNAs) are critical regulators of gene expression, and they have broad roles in the pathogenesis of different diseases including cancer. Limited studies and expression profiles of miRNAs are available in human osteosarcoma cells. By applying a miRNA microarray analysis, we observed a number of miRNAs with abnormal expression in cancerous tissues from osteosarcoma patients. Of particular interest in this study was miR-449c, which was significantly downregulated in osteosarcoma cells and patients, and its expression was negatively correlated with tumor size and tumor MSTS stages. Ectopic expression of miR-449c significantly inhibited osteosarcoma cell proliferation and colony formation ability, and caused cell cycle arrest at the G1 phase. Further analysis identified that miR-449c was able to directly target the oncogene c-Myc and negatively regulated its expression. Overexpression of c-Myc partially reversed miR-449c-mimic-inhibited cell proliferation and colony formation. Moreover, DNA hypermethylation was observed in two CpG islands adjacent to the genomic locus of miR-449c in osteosarcoma cells. Conversely, treatment with the DNA methylation inhibitor AZA caused induction of miR-449c. In conclusion, our results support a model that DNA methylation mediates downregulation of miR-449c, diminishing miR-449c mediated inhibition of c-Myc and thus leading to the activation of downstream targets, eventually contributing to osteosarcoma tumorigenesis.


Assuntos
Metilação de DNA/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Metilação de DNA/fisiologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
11.
J Cancer ; 8(9): 1619-1628, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775781

RESUMO

Osteosarcoma is the most common bone cancer primarily occurring in children and young adults. Over the past few years, the deregulation of a superfamily transcription factors, known as forkhead box (FOX) proteins, has been demonstrated to contribute to the pathogenesis of osteosarcoma. Molecular mechanism studies have demonstrated that FOX family proteins participate in a variety of signaling pathways and that their expression can be regulated by multiple factors. The dysfunction of FOX genes can alter osteosarcoma cell differentiation, metastasis and progression. In this review, we summarized the evidence that FOX genes play direct or indirect roles in the development and progression of osteosarcoma, and evaluated the emerging role of FOX proteins as targets for therapeutic intervention.

12.
Am J Cancer Res ; 7(7): 1407-1422, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744393

RESUMO

Autophagy and apoptosis are the two major modes of cell death, and autophagy usually inhibits apoptosis. The current understanding has shown that there is a complex crosstalk between the components of these two pathways. Here, we describe a transcriptional mechanism that links autophagy to apoptosis. We show that the cisplatin-resistant MG63-R12 and U2OS-R5 osteosarcoma sublines, in comparison to their parental MG63 and U2OS cells, respectively, exhibit increased autophagy but decreased apoptosis levels after treatment with cisplatin. We then used a microarray assay to examine the gene expression changes in these two cisplatin-resistant sublines and found that the expression of the transcription factor FOXO3a was dramatically decreased. Pharmacological treatment with either 3-methyladenine to inhibit autophagy or with rapamycin to activate autophagy in these two cisplatin-resistant sublines resulted in the accumulation or degradation of FOXO3a, respectively. Ectopic expression of FOXO3a in MG63-R12 and U2OS-R5 cells significantly enhanced cell sensitivity to cisplatin through a mechanism in which FOXO3a directly binds to the PUMA promoter and activates its expression, as well as its downstream event, the intrinsic apoptosis pathway. Importantly, this overexpression resulted in tumor growth inhibition in vivo. In conclusion, our results provide new insights into the molecular link between autophagy and apoptosis that involves a FOXO3a-mediated transcriptional mechanism. Importantly, our results may facilitate the development of therapeutic strategies for osteosarcoma patients who have become resistant to cisplatin therapy.

13.
J Biol Chem ; 292(27): 11445-11451, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28515324

RESUMO

How each metalloprotein assembles the correct metal at the proper binding site presents challenges to the cell. The di-iron enzyme ribonucleotide reductase (RNR) uses a diferric-tyrosyl radical (FeIII2-Y•) cofactor to initiate nucleotide reduction. Assembly of this cofactor requires O2, FeII, and a reducing equivalent. Recent studies show that RNR cofactor biosynthesis shares the same source of iron, in the form of [2Fe-2S]-GSH2 from the monothiol glutaredoxin Grx3/4, and the same electron source, in the form of the Dre2-Tah18 electron transfer chain, with the cytosolic iron-sulfur protein assembly (CIA) machinery required for maturation of [4Fe-4S] clusters in cytosolic and nuclear proteins. Here, we further investigated the interplay between the formation of the FeIII2-Y• cofactor in RNR and the cellular iron-sulfur (Fe-S) protein biogenesis pathways by examining both the iron loading into the RNR ß subunit and the RNR catalytic activity in yeast mutants depleted of individual components of the mitochondrial iron-sulfur cluster assembly (ISC) and the CIA machineries. We found that both iron loading and cofactor assembly in RNR are dependent on the ISC machinery. We also found that Dre2 is required for RNR cofactor formation but appears to be dispensable for iron loading. None of the CIA components downstream of Dre2 was required for RNR cofactor formation. Thus, the pathways for RNR and Fe-S cluster biogenesis bifurcate after the Dre2-Tah18 step. We conclude that RNR cofactor biogenesis requires the ISC machinery to mature the Grx3/4 and Dre2 Fe-S proteins, which then function in iron and electron delivery to RNR, respectively.


Assuntos
Radicais Livres/metabolismo , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glutarredoxinas/genética , Proteínas Ferro-Enxofre/genética , Oxirredutases/genética , Ribonucleotídeo Redutases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Int J Biol Sci ; 13(5): 561-573, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28539830

RESUMO

MicroRNA-370 (miR-370) has been observed to act as a tumor suppressor through the targeting of different proteins in a variety of tumors. Our previous study indicated that miR-370 was able to target forkhead box protein M1 (FOXM1) to inhibit cell growth and metastasis in human osteosarcoma cells. In this study, we reported that FOXM1 interacted with ß-catenin in vitro and in vivo. Similar to FOXM1, critical components of the Wnt signaling pathway, including ß-catenin, c-Myc, and Cyclin D1, were also highly expressed in different human osteosarcoma cells lines. Pharmacological inhibition of FOXM1 or ß-catenin but not of c-Myc was associated with the increased expression of miR-370. Ectopic expression of miR-370 inhibited the downstream signaling of ß-catenin. Moreover, osteosarcoma cells treated with 5-AZA-2'-deoxycytidine (AZA), a DNA methylation inhibitor, exhibited increased levels of miR-370 and decreased levels of ß-catenin downstream targets, which resulted in inhibition of cell proliferation and colony formation ability. In conclusion, our results supported a model in which the DNA methylation-mediated down-regulation of miR-370 reduced its inhibitory effect on FOXM1, thereby promoting FOXM1-ß-catenin interaction and activating the Wnt/ß-Catenin signaling pathway in human osteosarcoma cells.


Assuntos
Ciclina D1/metabolismo , Metilação de DNA/genética , MicroRNAs/genética , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Metilação de DNA/efeitos dos fármacos , Decitabina , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Humanos , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
15.
Sci Rep ; 7(1): 1175, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446751

RESUMO

Cell cycle progression in mammals is strictly controlled by a number of cyclin-dependent kinases (CDKs) and CDK inhibitors (CKIs), the expression of which is often dysregulated in cancer cells. Our previous work revealed that Cullin 4B (CUL4B), a critical component of the Cullin4B-RING E3 ligase complex (CRL4B), is overexpressed in human osteosarcoma cells through an unknown mechanism. Here, we demonstrated that CUL4B forms an E3 ligase with RBX1 (RING-box 1), DDB1 (DNA damage binding protein 1), and DCAF11 (DDB1 and CUL4 associated factor 11) in human osteosarcoma cells. In vitro and in vivo ubiquitination analyses indicated that CRL4BDCAF11 E3 ligase was able to specifically ubiquitinate a CDK inhibitor-p21Cip1 at K16, K154, K161 and K163 but not at K75 and K141. Knocking down any component of the CRL4BDCAF11 complex, including CUL4B, DDB1 or DCAF11, using short hairpin RNAs (shRNAs) attenuated the ubiquitination level of p21Cip1, inhibited osteosarcoma cell proliferation, led to cell cycle arrest at S phase, and decreased colony formation rate. Taken together, our data suggest that the CRL4BDCAF11 complex represents a unique E3 ligase that promotes the ubiquitination of p21Cip1 and regulates cell cycle progression in human osteosarcoma cells.


Assuntos
Proteínas de Transporte/metabolismo , Ciclo Celular , Proteínas Culina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas de Ligação a DNA/metabolismo , Osteossarcoma/patologia , Processamento de Proteína Pós-Traducional , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Silenciamento de Genes , Humanos , Ubiquitinação
16.
J Cancer ; 7(9): 1057-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27326248

RESUMO

Elevated expression of survivin is observed in a number of cancer types, including human osteosarcoma. Few studies have demonstrated that survivin expression levels can be considered an independent predictor of survival for human osteosarcoma patients. However, the underlying molecular mechanisms of survivin in the process of human osteosarcoma carcinogenesis remain unclear. In the current study, we evaluated the biological effects of survivin knockdown on osteosarcoma cell proliferation, colony formation rate, and sensitivity to the chemotherapeutic agent cisplatin. We found that two different osteosarcoma cell lines, U2OS and Saos-2, have relatively higher expression levels of survivin, and specific knockdown of survivin resulted in a number of effects, such as inhibition of cell proliferation, decreased colony formation rate, cell cycle arrest at G2/M phase, induction of apoptosis, and increased sensitivity to cisplatin. In addition, we identified two microRNAs, miR-34a and miR-203, that are aberrantly expressed in human osteosarcoma cells and specifically target survivin by inhibiting its expression, therefore repressing osteosarcoma cell maintenance and proliferation.

17.
Plant Cell Rep ; 35(6): 1213-20, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27038938

RESUMO

KEY MESSAGE: ABC1K1 functions as a novel negative regulator downstream of phyB and HY5 in red light-mediated Arabidopsis development. Light is a key environmental factor for plant morphogenesis. To understand the role of ACTIVITY OF BC1 COMPLEX KINASE (ABC1K) family members in light-mediated Arabidopsis development, we examined the phenotype of abc1k mutants under various light conditions. We show that abc1k1 mutants display significantly short hypocotyls specifically under continuous red light and this effect is more apparent under higher red light fluence rates. The expression of PHYTOCHROME-INTERACTING FACTORs (PIFs), transcription factors in red light signaling, is repressed in abc1k1 mutants under continuous red light. The expression pattern of ABC1K1 is independent of light conditions. Furthermore, genetic analysis indicates that abc1k1 almost completely suppresses the long hypocotyl phenotype of phyB and hy5. However, the mutation of ABC1K3, one homolog of ABC1K1, reverses the inhibition of hypocotyl elongation in phyB and hy5 by abc1k1. Together, our research describes novel characteristics for ABC1K1 in seedling stage and defines it as a novel negative component in red light-mediated Arabidopsis development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas Quinases/fisiologia , Arabidopsis/enzimologia , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Hipocótilo/crescimento & desenvolvimento , Luz , Mutação , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Fatores de Transcrição
18.
Int J Mol Med ; 37(6): 1439-48, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27121482

RESUMO

Intervertebral discs (IVDs) are complex structures that consist of three parts, namely, nucleus pulposus, annulus fibrosus and cartilage endplates. With aging, IVDs gradually degenerate as a consequence of many factors, such as microenvironment changes and cell death. Human clinical trial and animal model studies have documented that cell death, particularly apoptosis and autophagy, significantly contribute to IVD degeneration. The mechanisms underlying this phenomenon include the activation of apoptotic pathways and the regulation of autophagy in response to nutrient deprivation and multiple stresses. In this review, we briefly summarize recent progress in understanding the function and regulation of apoptosis and autophagy signaling pathways. In particular, we focus on studies that reveal the functional mechanisms of these pathways in IVD degeneration.


Assuntos
Envelhecimento/genética , Apoptose/genética , Autofagia/genética , Degeneração do Disco Intervertebral/genética , Disco Intervertebral/metabolismo , Envelhecimento/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Estresse Oxidativo , Transdução de Sinais
19.
J Biol Chem ; 291(18): 9807-17, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26970775

RESUMO

Ribonucleotide reductase (RNR) is an essential iron-dependent enzyme that catalyzes deoxyribonucleotide synthesis in eukaryotes. Living organisms have developed multiple strategies to tightly modulate RNR function to avoid inadequate or unbalanced deoxyribonucleotide pools that cause DNA damage and genome instability. Yeast cells activate RNR in response to genotoxic stress and iron deficiency by facilitating redistribution of its small heterodimeric subunit Rnr2-Rnr4 from the nucleus to the cytoplasm, where it forms an active holoenzyme with large Rnr1 subunit. Dif1 protein inhibits RNR by promoting nuclear import of Rnr2-Rnr4. Upon DNA damage, Dif1 phosphorylation by the Dun1 checkpoint kinase and its subsequent degradation enhances RNR function. In this report, we demonstrate that Dun1 kinase triggers Rnr2-Rnr4 redistribution to the cytoplasm in response to iron deficiency. We show that Rnr2-Rnr4 relocalization by low iron requires Dun1 kinase activity and phosphorylation site Thr-380 in the Dun1 activation loop, but not the Dun1 forkhead-associated domain. By using different Dif1 mutant proteins, we uncover that Dun1 phosphorylates Dif1 Ser-104 and Thr-105 residues upon iron scarcity. We observe that the Dif1 phosphorylation pattern differs depending on the stimuli, which suggests different Dun1 activating pathways. Importantly, the Dif1-S104A/T105A mutant exhibits defects in nucleus-to-cytoplasm redistribution of Rnr2-Rnr4 by iron limitation. Taken together, these results reveal that, in response to iron starvation, Dun1 kinase phosphorylates Dif1 to stimulate Rnr2-Rnr4 relocalization to the cytoplasm and promote RNR function.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ferro/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleotídeo Redutases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Dano ao DNA , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/fisiologia , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
J Cancer ; 7(3): 314-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26918045

RESUMO

Survivin is the smallest member of the inhibitor of apoptosis protein family, which has key roles in regulating cell division and inhibiting apoptosis by blocking caspase activation. Survivin is highly expressed in most human cancers, such as lung, pancreatic and breast cancers, relative to normal tissues. Aberrant survivin expression is associated with tumor cell proliferation, progression, angiogenesis, therapeutic resistance, and poor prognosis. Studies on the underlying molecular mechanisms indicate that survivin is involved in the regulation of cytokinesis and cell cycle progression, as well as participates in a variety of signaling pathways such as the p53, Wnt, hypoxia, transforming growth factor, and Notch signaling pathways. In this review, recent progress in understanding the molecular basis of survivin is discussed. Therapeutic strategies targeting survivin in preclinical studies are also briefly summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...