Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Exp Eye Res ; 243: 109910, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38663720

RESUMO

Fluorescent proteins (FPs) have been widely used to investigate cellular and molecular interactions and trace biological events in many applications. Some of the FPs have been demonstrated to cause undesirable cellular damage by light-induced ROS production in vivo or in vitro. However, it remains unknown if one of the most popular FPs, tdTomato, has similar effects in neuronal cells. In this study, we discovered that tdTomato expression led to unexpected retinal dysfunction and ultrastructural defects in the transgenic mouse retina. The retinal dysfunction mainly manifested in the reduced photopic electroretinogram (ERG) responses and decreased contrast sensitivity in visual acuity, caused by mitochondrial damages characterized with cellular redistribution, morphological modifications and molecular profiling alterations. Taken together, our findings for the first time demonstrated the retinal dysfunction and ultrastructural defects in the retinas of tdTomato-transgenic mice, calling for a more careful design and interpretation of experiments involved in FPs.

3.
Ann N Y Acad Sci ; 1527(1): 60-74, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531162

RESUMO

With the increased use of artificial light and the prolonged use of optoelectronic products, light damage (LD) to the human retina has been identified as a global vision-threatening problem. While there is evidence of a significant correlation between light-induced retinal damage and age-related vision impairment in age-related macular degeneration, it is unclear how light-induced retinal degeneration manifests itself and whether there are agents capable of preventing the development of LD in the retina. This study investigated a mechanism by which blue light leads to photoreceptor death. By observing blue light exposure in retinal organoids and photoreceptor cells, we concluded that there could be significant apoptosis of the photoreceptors. We demonstrate that regenerating islet-derived 1 alpha (REG1A) prevents photoreceptors from undergoing this LD-induced apoptosis by increasing expression of the anti-apoptotic gene Bcl2 and downregulating expression of the pro-apoptotic gene Bax, resulting in reduced mitochondrial damage and improved aerobic capacity in photoreceptor cells. For the first time, REG1A has been shown to restore mitochondrial function and cell apoptosis after LD-induced damage, suggesting its potential application in the prevention and treatment of retinal vision loss.


Assuntos
Retina , Degeneração Retiniana , Humanos , Retina/metabolismo , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Apoptose , Luz , Litostatina
4.
Sci Adv ; 8(14): eabk0942, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394837

RESUMO

Lysosomes contribute to cellular homeostasis via processes including macromolecule degradation, nutrient sensing, and autophagy. Defective proteins related to lysosomal macromolecule catabolism are known to cause a range of lysosomal storage diseases; however, it is unclear whether mutations in proteins involved in homeostatic nutrient sensing mechanisms cause syndromic sensory disease. Here, we show that SLC7A14, a transporter protein mediating lysosomal uptake of cationic amino acids, is evolutionarily conserved in vertebrate mechanosensory hair cells and highly expressed in lysosomes of mammalian cochlear inner hair cells (IHCs) and retinal photoreceptors. Autosomal recessive mutation of SLC7A14 caused loss of IHCs and photoreceptors, leading to presynaptic auditory neuropathy and retinitis pigmentosa in mice and humans. Loss-of-function mutation altered protein trafficking and increased basal autophagy, leading to progressive cell degeneration. This study implicates autophagy-lysosomal dysfunction in syndromic hearing and vision loss in mice and humans.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Perda Auditiva Central , Lisossomos , Retinose Pigmentar , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Perda Auditiva Central/metabolismo , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Mamíferos , Camundongos , Mutação , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
5.
J Sci Food Agric ; 102(9): 3817-3825, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34923627

RESUMO

BACKGROUND: Tyrosinase inhibitors find potential application in food, cosmetic and medicinal products, but most of the identified tyrosinase inhibitors are not suitable for practical use because of safety regulations or other problems. For the purpose of development of novel tyrosinase inhibitors that meet the requirement for practical application, a novel stilbene analogue (SA) was designed. RESULTS: SA was found to possess a potent inhibitory effect against both mono- and diphenolase activities of mushroom tyrosinase, with IC50 values of 1.56 and 7.15 µmol L-1 , respectively. Compared with a natural tyrosinase inhibitor - kojic acid - the anti-tyrosinase effect of SA was significantly improved. Analysis of inhibition kinetics indicated that SA was a reversible and competitive-noncompetitive mixed-type inhibitor. SA was also found to possess more potent antioxidant activities (DPPH, superoxide anion radical and hydroxyl radical scavenging ability) than those of kojic acid. Cell viability studies revealed that SA was non-toxic to two cell lines. Furthermore, an anti-browning test demonstrated that SA effectively delayed the blackening of shrimp. CONCLUSION: SA has potential as an anti-browning agent in foods. © 2021 Society of Chemical Industry.


Assuntos
Agaricales , Estilbenos , Agaricales/metabolismo , Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase , Estilbenos/farmacologia
6.
Invest Ophthalmol Vis Sci ; 62(12): 14, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34529004

RESUMO

Purpose: Argonaute proteins are key players in small RNA-guided gene silencing processes. Ago2 is the member of the Argonaute subfamily with slicer endonuclease activity and is critical for microRNA homeostasis and indispensable for biological development. However, the impact of Ago2 dysregulation in the retina remains to be fully explored. In this study, we studied the role of Ago2 in mouse retina. Methods: We explored the function of Ago2 in the mouse retina through an adeno-associated virus-mediated Ago2 disruption mouse model. An ERG was carried out to determine the retinal function. Spectral domain optical coherence tomography, fundus photographs, and immunostaining were performed to investigate the retinal structure. A quantitative RT-PCR assay was used to determine the expression of noncoding RNAs. Results: Both silencing and overexpression of Ago2 in mouse retina resulted in significant retinal morphological alterations and severe impairment of retinal function, mainly with a thinned outer nuclear layer, shortened inner segment/outer segment, and diminished ERG responses. Furthermore, Ago2 disruption resulted in alterations of noncoding RNAs in retina. Conclusions: Our finding demonstrated that Ago2 interruption led to severe retinal degeneration, suggested that Ago2 homeostasis contributed to retinal structural and functional maintenance.


Assuntos
Proteínas Argonautas/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Degeneração Retiniana/genética , Animais , Proteínas Argonautas/biossíntese , Modelos Animais de Doenças , Eletrorretinografia , Camundongos Endogâmicos C57BL , Retina , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/metabolismo , Tomografia de Coerência Óptica/métodos
7.
Ann Transl Med ; 9(3): 245, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33708872

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly due in large part to age-dependent atrophy of retinal pigment epithelium (RPE) cells. RPE cells form a monolayer located between the choroid and the outer segments of photoreceptors, playing multifarious roles in maintenance of visual function. Allogeneically induced pluripotent stem cell-derived RPE (iPSC-RPE or iRPE) has become a potential approach for providing an abundant source of donors for clinical cell products. Transplantation of iRPE has been proven effective in rescuing impaired retinas in Royal College of Surgeons (RCS) rats after approximately 5 to 6 weeks. Here, we explore the long-term (19 weeks) safety and efficacy of human iRPE cell transplantation in pre-clinical animal models. METHODS: The expression of human RPE-specific markers in iRPE cells was determined using immunofluorescence staining. For the proliferative test, Ki-67 expression was also verified by immunofluorescence and flow cytometric analysis. Then, iRPE cells were transplanted into the subretinal space of immune-deficient NOD/SCID/IL-2Rgcnull (NSG) mice to assess their safety. To evaluate whether the transplanted cells could survive and rescue visual function, we performed color fundus photography, focal electroretinogram and immunostaining after delivering iRPE cells into the subretinal space of RCS rats. RESULTS: Human iRPE cells expressed native RPE-specific markers, such as microphthalmia-associated transcription factor (MiTF), retinal pigment epithelium-specific 65-kDa protein (RPE65) and tight-junction associated structural protein (ZO-1), and their proliferative capacity (Ki-67 expression) was poor after 25 days of induction. A tumorigenicity test revealed no tumor formation or abnormal proliferation in the immunodeficient mice after subretinal injection of 5×105 iRPE cells. The transplanted iRPE cells survived for at least 19 weeks and maintained visual function for 15 weeks. CONCLUSIONS: In the present study, we provided further evidence for the use of human iRPE transplantation to treat retinal degenerative disease in pre-clinical animal models. Therefore, we consider human iRPE cells a promising source of cell replacement therapy for AMD.

8.
Exp Eye Res ; 202: 108283, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010290

RESUMO

Neuroretinal diseases are the predominant cause of irreversible blindness worldwide, mainly due to photoreceptor loss. Currently, there are no radical treatments to fully reverse the degeneration or even stop the disease progression. Thus, it is urgent to develop new biological therapeutics for these diseases on the clinical side. Stem cell-based treatments have become a promising therapeutic for neuroretinal diseases through the replacement of damaged cells with photoreceptors and some allied cells. To date, considerable efforts have been made to regenerate the diseased retina based on stem cell technology. In this review, we overview the current status of stem cell-based treatments for photoreceptor regeneration, including the major cell sources derived from different stem cells in pre-clinical or clinical trial stages. Additionally, we discuss herein the major challenges ahead for and potential new strategy toward photoreceptor regeneration.


Assuntos
Células Fotorreceptoras/fisiologia , Regeneração/fisiologia , Degeneração Retiniana/terapia , Transplante de Células-Tronco , Pessoas com Deficiência Visual/reabilitação , Animais , Humanos , Retina/fisiologia , Degeneração Retiniana/fisiopatologia
9.
Proc Natl Acad Sci U S A ; 117(52): 33628-33638, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318192

RESUMO

Retinoblastoma (Rb) is the most prevalent intraocular malignancy in children, with a worldwide survival rate <30%. We have developed a cancerous model of Rb in retinal organoids derived from genetically engineered human embryonic stem cells (hESCs) with a biallelic mutagenesis of the RB1 gene. These organoid Rbs exhibit properties highly consistent with Rb tumorigenesis, transcriptome, and genome-wide methylation. Single-cell sequencing analysis suggests that Rb originated from ARR3-positive maturing cone precursors during development, which was further validated by immunostaining. Notably, we found that the PI3K-Akt pathway was aberrantly deregulated and its activator spleen tyrosine kinase (SYK) was significantly up-regulated. In addition, SYK inhibitors led to remarkable cell apoptosis in cancerous organoids. In conclusion, we have established an organoid Rb model derived from genetically engineered hESCs in a dish that has enabled us to trace the cell of origin and to test novel candidate therapeutic agents for human Rb, shedding light on the development and therapeutics of other malignancies.


Assuntos
Células-Tronco Embrionárias Humanas/patologia , Organoides/patologia , Retinoblastoma/patologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Carcinogênese/patologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Camundongos Endogâmicos NOD , Mutagênese/genética , Mutação/genética , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transcriptoma/genética
10.
Front Cell Dev Biol ; 8: 565543, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240875

RESUMO

Cdr1as is the abundant circular RNA (circRNA) in human and vertebrate retinas. However, the role of Cdr1as in the retina remains unknown. In this study, we aimed to generate a Cdr1as knockout (KO) mouse model and investigate the retinal consequences of Cdr1as loss of function. Through in situ hybridization (ISH), we demonstrated that Cdr1as is mainly expressed in the inner retina. Using CRISPR/Cas9 targeting Cdr1as, we successfully generated KO mice. We carried out ocular examinations in the KO mice until postnatal day 500. Compared with the age-matched wild-type (WT) siblings, the KO mice displayed increased b-wave amplitude of photopic electrophysiological response and reduced vision contrast sensitivity. Through small RNA profiling of the retinas, we determined that miR-7 was downregulated, while its target genes were upregulated. Taken together, our results demonstrated for the first time that Cdr1as ablation led to a mild retinal consequence in mice, indicating that Cdr1as abundance is not indispensable for retinal development and maintenance.

11.
Mol Ther Methods Clin Dev ; 18: 869-879, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32953936

RESUMO

A major challenge to the development of therapies for human retinal degenerative diseases is the lack of an ideal preclinical model because of the physiological differences between humans and most model animals. Despite the successful generation of a primate model through germline knockout of a disease-causing gene, the major issues restricting modeling in nonhuman primates (NHPs) are their relatively long lifespan, lengthy gestation, and dominant pattern of singleton births. Herein, we generated three cynomolgus macaques with macular in situ knockout by subretinal delivery of an adeno-associated virus (AAV)-mediated CRISPR-Cas9 system targeting CNGB3, the gene responsible for achromatopsia. The in vivo targeting efficiency of CRISPR-Cas9 was 12%-14%, as shown by both immunohistochemistry and single-cell transcriptomic analysis. Through clinical ophthalmic examinations, we observed a reduced response of electroretinogram in the central retina, which corresponds to a somatic disruption of CNGB3. In addition, we did not detect CRISPR-Cas9 residue in the heart, liver, spleen, kidney, brain, testis, or blood a year after administration. In conclusion, we successfully generated a NHP model of cone photoreceptor dysfunction in the central retina using an in situ CNGB3-knockout strategy.

12.
Invest Ophthalmol Vis Sci ; 61(3): 12, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32176259

RESUMO

Purpose: The microRNA cluster miR-183C, which includes miR-183 and two other genes, is critical for multiple sensory systems. In mouse retina, removal of this cluster results in photoreceptor defects in polarization, phototransduction, and outer segment elongation. However, the individual roles of the three components of this cluster are not clearly known. We studied the separate role of mouse miR-183 in in vivo. Methods: miR-183 knockout mice were generated using the CRISPR/Cas9 genome-editing system. Electroretinography were carried out to investigate the changes of retinal structures and function. miR-183 was overexpressed by subretinal adeno-associated virus (AAV) injection in vivo. Rnf217, a target of miR-183 was overexpressed by cell transfection of the photoreceptor-derived cell line 661W in vitro. RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to compare the gene expression changes in AAV-injected mice and transfected cells. Results: The miR-183 knockout mice showed progressively attenuated electroretinogram responses. Over- or under-expression of Rnf217, a direct target of miR-183, misregulated expression of cilia-related BBSome genes. Rnf217 overexpression also led to compromised electroretinography responses in WT mice, indicating that it may contribute to functional abnormalities in miR-183 knockout mice. Conclusions: miR-183 is essential for mouse retinal function mediated directly and indirectly through Rnf217 and cilia-related genes. Our findings provide valuable insights into the explanation and analysis of the regulatory role of the individual miR-183 in miR-183C.


Assuntos
Deleção de Genes , MicroRNAs/genética , Retina/fisiopatologia , Degeneração Retiniana/genética , Animais , Células Cultivadas , Cílios/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Edição de Genes/métodos , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos , Camundongos Knockout , MicroRNAs/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/fisiopatologia , Transfecção/métodos
13.
Mol Ther Nucleic Acids ; 19: 339-349, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31877410

RESUMO

Circular RNAs (circRNAs) represent a class of noncoding RNAs with a wide expression pattern, and they constitute an important layer of the genome regulatory network. To date, the expression pattern and regulatory potency of circRNAs in the retina, a key part of the central nervous system, are not yet well understood. In this study, RNAs from five stages (E18.5, P1, P7, P14, and P30) of mouse retinal development were sequenced. A total of 9,029 circRNAs were identified. Most circRNAs were expressed in different stages with a specific signature, and their expression patterns were different from those of their host linear transcripts. Some circRNAs could act as sponges for several retinal microRNAs (miRNAs). Furthermore, circTulp4 could function as a competitive endogenous RNA (ceRNA) to regulate target genes. Remarkably, silencing circTulp4 in vivo led to mice having a thin outer nuclear layer (ONL) and defective retinal function. In addition, we found that circRNAs were dysregulated at a much earlier time point than that of disease onset in a retinal degeneration model (rd8 mice). In summary, we provide the first circRNA expression atlas during retinal development and highlight a key biological role for circRNAs in retinal development and degeneration.

14.
Genet Test Mol Biomarkers ; 23(8): 580-588, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31373853

RESUMO

Objective: To evaluate the overall diagnostic value of human epididymis protein 4 (HE4) combined with carbohydrate antigen 125 (CA125) in endometrial carcinoma (EC) based on a meta-analysis of all eligible studies. Methods: The PubMed, Cochrane, Embase, CNKI, VANFUN, and VIP databases were searched by index words to identify eligible studies and also to search for relevant literature sources that had been published by January 2019. Eligible studies included prospective cohort studies or cross-sectional studies. The heterogeneity of the included studies was used to select appropriate effect models to calculate summary weighted sensitivity, specificity, and diagnostic odds ratios (DORs). The summary receiver operational characteristic (SROC) analysis was summarized for the EC. Results: In total, 25 studies that had explored the diagnostic accuracy of HE4 combined with CA125 for EC were included in this meta-analysis. Nine were from English language articles and 16 from Chinese language articles. The global sensitivity and specificity of HE4 combined with CA125 for EC were as follows: 66% (95% CI: 60-72) and 92% (95% CI: 88-95), respectively. The global positive likelihood ratio and global negative likelihood ratio of HE4 combined with CA125 for EC were as follows: 8.03 (95% CI: 5.36-12.04) and 0.37 (95% CI: 0.31-0.44), respectively. The global DOR was19.59 (95% CI: 12.25-31.32) for IL-6. The area under the SROC was high for HE4 combined with CA125 (AUC = 0.86; 95% CI: 0.83-0.89). Conclusion: This study provides a systematic review and meta-analysis of the diagnostic accuracy of HE4 combined with CA125 for EC. The results indicate that HE4 combined with CA125 is highly accurate for the diagnosis of EC.


Assuntos
Antígeno Ca-125/sangue , Neoplasias do Endométrio/sangue , Neoplasias do Endométrio/diagnóstico , Proteínas de Membrana/sangue , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/metabolismo , Feminino , Humanos , Curva ROC
15.
Invest Ophthalmol Vis Sci ; 60(4): 1265-1274, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30924851

RESUMO

Purpose: MicroRNA-182 (miR-182) is abundantly expressed in mammalian retinas; however, the association between miR-182 and retinal function remains unclear. In this study, we explored whether miR-182 contributes to functional decline in retinas using a miR-182 depleted mouse. Methods: Electroretinogram (ERG) amplitudes at different ages were measured in miR-182 knockout (KO) mice. The thickness and lamination of retinas were assessed using a color fundus camera and high-resolution optical coherence tomography. Expression levels of key photoreceptor-specific genes and the miR-183/96/182 cluster (miR-183C) were quantified using quantitative real-time PCR. RNA sequencing and light-induced damage were carried out to observe the changes in the retinal transcriptome and sensitivity to light damage in the miR-182 KO mice. Results: The ERG recording reveals that the ERG response amplitude decreased both at early and later ages when compared with control littermates. The expression of some key photoreceptor-specific genes was down-regulated with deletion of miR-182 in retina. RNA sequencing indicated that some biological processes of visual system were affected, and the numbers of potential target genes of miR-182 were presented in the mouse retina using bioinformatics analysis. The miR-182 KO mice were characterized by progressively losing the outer segment after being treated with light-damage exposure. The thickness and lamination of retina as well as compensatory expression of miR-183C showed no apparent changes in retina of miR-182 KO mice under normal laboratory lighting condition. Conclusions: Our findings provided new insights into the relationship between the miR-182 and retinal development and revealed that miR-182 may play a critical role in maintaining retinal function.


Assuntos
Sequência de Bases , MicroRNAs/genética , Retina/fisiopatologia , Degeneração Retiniana/genética , Deleção de Sequência , Animais , Modelos Animais de Doenças , Eletrorretinografia , Angiofluoresceinografia , Imuno-Histoquímica , Luz/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/fisiopatologia , Reação em Cadeia da Polimerase em Tempo Real , Retina/efeitos da radiação , Degeneração Retiniana/fisiopatologia , Tomografia de Coerência Óptica
16.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(6): 730-736, 2017 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-28669944

RESUMO

OBJECTIVE: To investigate the effect of BIX01294 (BIX), a methyltransferase inhibitor, on the migration and decidualization of the stromal cells in mouse uterus. METHODS: Mouse endometrial stromal cells were isolated and cultured from the uterus of pregnant mice on day 3.5 of gestation. The migration and decidualization of mouse endometrial stromal cells treated with BIX at different concentrations were observed with wound healing assay and real-time PCR. RESULTS: The migration distance of mouse endometrial stromal cells increased as the BIX concentration increased within the range below 15 µmol/L. Compared with the control cells, the cells treated with BIX (15 µmol/L) showed significantly increased migration distances, but increasing BIX concentration to 20 µmol/L did not further increase the cell migration distance and began to cause cell death. Compared with the control cells, the BIX-treated stromal cells exhibited significantly down-regulated expression of Ehmt2 mRNA, and 15 µmol/L BIX caused inhibition of decidualization in the stromal cells. CONCLUSION: Within a defined concentration range, BIX promotes the migration and inhibits decidualization of mouse uterine stromal cells by inhibiting the expression of Ehmt2 mRNA.


Assuntos
Azepinas/farmacologia , Decídua/citologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Quinazolinas/farmacologia , Células Estromais/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Implantação do Embrião , Endométrio/citologia , Feminino , Camundongos , Gravidez , Células Estromais/citologia
17.
Proc Natl Acad Sci U S A ; 114(24): 6376-6381, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28559309

RESUMO

MicroRNAs (miRNAs) are known to be essential for retinal maturation and functionality; however, the role of the most abundant miRNAs, the miR-183/96/182 cluster (miR-183 cluster), in photoreceptor cells remains unclear. Here we demonstrate that ablation of two components of the miR-183 cluster, miR-183 and miR-96, significantly affects photoreceptor maturation and maintenance in mice. Morphologically, early-onset dislocated cone nuclei, shortened outer segments and thinned outer nuclear layers are observed in the miR-183/96 double-knockout (DKO) mice. Abnormal photoreceptor responses, including abolished photopic electroretinography (ERG) responses and compromised scotopic ERG responses, reflect the functional changes in the degenerated retina. We further identify Slc6a6 as the cotarget of miR-183 and miR-96. The expression level of Slc6a6 is significantly higher in the DKO mice than in the wild-type mice. In contrast, Slc6a6 is down-regulated by adeno-associated virus-mediated overexpression of either miR-183 or miR-96 in wild-type mice. Remarkably, both silencing and overexpression of Slc6a6 in the retina are detrimental to the electrophysiological activity of the photoreceptors in response to dim light stimuli. We demonstrate that miR-183/96-mediated fine-tuning of Slc6a6 expression is indispensable for photoreceptor maturation and maintenance, thereby providing insight into the epigenetic regulation of photoreceptors in mice.


Assuntos
MicroRNAs/genética , MicroRNAs/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Animais , Visão de Cores/fisiologia , Eletrorretinografia , Epigênese Genética , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Visão Noturna/fisiologia , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
18.
Nan Fang Yi Ke Da Xue Xue Bao ; 37(5): 594-599, 2017 05 20.
Artigo em Chinês | MEDLINE | ID: mdl-28539280

RESUMO

OBJECTIVE: To detect the expression of FABP7 in the placenta of pregnant mice and in HTR-8/Svneo cells. METHODS: Real-time PCR and immunofluorescence were used to detect FABP7 mRNA and protein expressions in the uterine and placental tissue of pregnant mice at different days of gestation. FABP7 expression was also detected in cultured HTR-8/Svneo cells using immunofluorescence assay. The mice were treated with E2, P4 or their combination for 6 and 24 h and Fabp7 mRNA level in the uterus was detected with real-time PCR. RESULTS: At 7.5-10.5 days of gestation, the pregnant mice showed positive expressions of Fabp7 mRNA in the uterus and placenta, and FABP7 protein was detected in the decidualized cells and trophoblast giant cells. The expressions of FABP7 were detected at both the mRNA and protein levels in cultured HTR-8/Svneo cells. In mice treated with P4 alone or with E2+P4 for 6 and 24 h, the expression level of Fabp7 mRNA was upregulated in the uterus. Fabp7 upregulation was observed in mice at 24 h following E2 treatment but not at 6 h. CONCLUSION: FABP7 is expressed in trophoblast giant cells and decidual cells in the placental tissue of mice and in cultured HTR-8/Svneo cells, suggesting the involvement of FABP7 in placental development and in maintenance of pregnancy. E2 and P4 can regulate the expression of FABP7 in mouse uterus.


Assuntos
Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular , Decídua/citologia , Proteína 7 de Ligação a Ácidos Graxos/genética , Feminino , Humanos , Camundongos , Placentação , Gravidez , Proteínas Supressoras de Tumor/genética
19.
Chin Med J (Engl) ; 130(9): 1026-1032, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28469096

RESUMO

BACKGROUND: Excessive reactive oxygen species (ROS) may lead to a number of reproductive diseases such as polycystic ovary syndrome. This study aimed to establish an animal model of ovarian oxidative stress and to assess the protective effect of curcumin against oxidative injury. METHODS: Ovarian oxidative stress was induced in female Kunming mice (n = 40) with intraperitoneal injection of 8 mg/kg sodium arsenite (As) once every other day for 16 days; meanwhile, they were, respectively, treated by intragastric administration of 0, 100, 150, or 200 mg/kg (n = 10/group) curcumin once per day for 21 days. Ten normal mice were used as control. Then, the mice were injected intraperitoneally with BrdU and sacrificed; the right ovaries were collected for hematoxylin and eosin (HE) staining and BrdU immunohistochemistry, and the left ovaries for enzyme-linked immunosorbent assay (ELISA) and Western blotting analyses. RESULTS: The ELISA results showed that ROS (11.74 ± 0.65 IU/mg in 8 mg/kg AS + 0 mg/kg curcumin group vs. 10.71 ± 0.91 IU/mg in control group, P= 0.021) and malondialdehyde (MDA) (0.32 ± 0.02 nmol/g in 8 mg/kg AS + 0 mg/kg curcumin group vs. 0.27 ± 0.02 nmol/g in control group, P= 0.048) increased while superoxide dismutase (SOD) (3.96 ± 0.36 U/mg in 8 mg/kg AS + 0 mg/kg curcumin group vs. 4.51 ± 0.70 U/mg in control group, P= 0.012) and glutathione peroxidase (17.36 ± 1.63 U/g in 8 mg/kg AS + 0 mg/kg curcumin group vs. 18.92 ± 1.80 U/g in control group, P= 0.045) decreased in the ovary after injection of As, indicating successful modeling of oxidative stress. Curcumin treatment could considerably increase SOD (4.57 ± 0.68, 4.49 ± 0.27, and 4.56 ± 0.25 U/mg in 100 mg/kg, 150 mg/kg, and 200 mg/kg curcumin group, respectively, allP < 0.05) while significantly reduce ROS (10.64 ± 1.38, 10.73 ± 0.71, and 10.67 ± 1.38 IU/mg in 100 mg/kg, 150 mg/kg, and 200 mg/kg curcumin group, respectively, allP < 0.05) and MDA (0.28 ± 0.02, 0.25 ± 0.03, and 0.27 ± 0.04 nmol/g in 100 mg/kg, 150 mg/kg, and 200 mg/kg curcumin group, respectively; bothP < 0.05) in the ovary. HE staining and BrdU immunohistochemistry of the ovarian tissues indicated the increased amount of atretic follicles (5.67 ± 0.81, 5.84 ± 0.98, and 5.72 ± 0.84 in 100 mg/kg, 150 mg/kg, and 200 mg/kg curcumin group, respectively, all P < 0.05), and the inhibited proliferation of granular cells under oxidative stress would be reversed by curcumin. Furthermore, the Western blotting of ovarian tissues showed that the p66Shc expression upregulated under oxidative stress would be lowered by curcumin. CONCLUSION: Curcumin could alleviate arsenic-induced ovarian oxidative injury to a certain extent.


Assuntos
Arsenitos/toxicidade , Curcumina/uso terapêutico , Compostos de Sódio/toxicidade , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Glutationa Peroxidase/metabolismo , Imuno-Histoquímica , Malondialdeído/metabolismo , Camundongos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
20.
Invest Ophthalmol Vis Sci ; 58(2): 801-811, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28152141

RESUMO

Purpose: Accumulating evidence has demonstrated that excessive immunoreaction plays a prominent role in the pathogenesis of dry AMD. Toll-like receptor 3 (TLR3) can be activated by double-stranded (ds)RNA in retinal pigment epithelia and trigger an innate immunity-mediated inflammatory response. However, its role in photoreceptor cells, the effectors of AMD geographic atrophy, remains unclear. Methods: The expression of TLR3 was examined in mouse retina and in a murine photoreceptor cell line (661W). Retinal structure, function, and cell death in the polyinosine-polycytidylic acid (poly I:C)-treated retina were investigated by optical coherence tomography, electroretinography (ERG), and immunostaining. Cytokine and chemokine expression as well as cell death were measured in poly I:C-exposed 661W cells and explant retinas. By comparing the RNA sequencing (seq) data of 661W cells and murine retina, we comprehensively investigated the contribution of photoreceptor in poly I:C-induced retinal immune response. Results: Toll-like receptor 3 was highly expressed in the inner segment of the photoreceptor and in 661W cells. We found poly I:C induced significant retinal structural damages and impairment of ERG responses. Focal ERG demonstrated that injected and parainjected zones were functionally damaged by poly I:C. In addition, poly I:C acted on cultured photoreceptor cells directly and evoked an inflammatory response that exhibited similarities with the immune response in mouse retina. Moreover, TLR3 activation initiated cell death in murine photoreceptor cells in vivo and in vitro. Additionally, poly I:C initiated immune response in explant retinas. Conclusions: We deciphered the TLR3-mediated inflammatory response in photoreceptor cells. Our findings suggested TLR3-mediated inflammatory response in photoreceptor cells may play an important role in dry AMD, offering new insights of potential treatments targeting photoreceptor immunity.


Assuntos
Morte Celular/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Receptor 3 Toll-Like/metabolismo , Análise de Variância , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Indutores de Interferon/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/imunologia , Poli I-C/farmacologia , Retina/efeitos dos fármacos , Retina/fisiopatologia , Análise de Sequência de RNA , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...