Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 111, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735995

RESUMO

CRISPR‒Cas7-11 is a Type III-E CRISPR-associated nuclease that functions as a potent RNA editing tool. Tetratrico-peptide repeat fused with Cas/HEF1-associated signal transducer (TPR-CHAT) acts as a regulatory protein that interacts with CRISPR RNA (crRNA)-bound Cas7-11 to form a CRISPR-guided caspase complex (Craspase). However, the precise modulation of Cas7-11's nuclease activity by TPR-CHAT to enhance its utility requires further study. Here, we report cryo-electron microscopy (cryo-EM) structures of Desulfonema ishimotonii (Di) Cas7-11-crRNA, complexed with or without the full length or the N-terminus of TPR-CHAT. These structures unveil the molecular features of the Craspase complex. Structural analysis, combined with in vitro nuclease assay and electrophoretic mobility shift assay, reveals that DiTPR-CHAT negatively regulates the activity of DiCas7-11 by preventing target RNA from binding through the N-terminal 65 amino acids of DiTPR-CHAT (DiTPR-CHATNTD). Our work demonstrates that DiTPR-CHATNTD can function as a small unit of DiCas7-11 regulator, potentially enabling safe applications to prevent overcutting and off-target effects of the CRISPR‒Cas7-11 system.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Sistemas CRISPR-Cas/genética , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
3.
Angew Chem Int Ed Engl ; 63(11): e202318492, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38265308

RESUMO

Monoatomic dispersion of precious metals on the surface of CeO2 nanocrystals is a highly practical approach for dramatically reducing the usage of precious metals while exploiting the unique properties of single-atom catalysts. However, the specific atomic sites for anchoring precious metal atoms on the CeO2 support and underlying chemical mechanism remain partially unknown. Herein, we show that the terminal hydroxyls on the (100) surface are the most stable sites for anchoring Ag atoms on CeO2 , indicating that CeO2 nanocubes are the most efficient substrates to achieve monoatomic dispersion of Ag. Importantly, the newly identified chemical mechanism for single-metal-atom dispersion on CeO2 nanocubes appears to be generic and can thus be extended to other precious metals (Pt and Pd). In fact, our experiments also show that atomically dispersed Pt/Pd species exhibit morphology- and temperature-dependent CO selectivity in the catalytic CO2 hydrogenation reaction.

4.
Adv Mater ; 36(10): e2210455, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854170

RESUMO

Along with the rapid development and ever-deepening understanding of nanoscience and nanotechnology, nanomaterials hold promise to mimic the highly evolved biological exquisite nanostructures and sophisticated functions. Here, inspired by the ubiquitous antibacterial nanostructures on the wing surfaces of some insects, a NiCo2 O4 nanozyme with self-adaptive hierarchical nanostructure is developed that can capture bacteria of various morphotypes via the physico-mechanical interaction between the nanostructure and bacteria. Moreover, the developed biomimetic nanostructure further exhibits superior peroxidase-like catalytic activity, which can catalytically generate highly toxic reactive oxygen species that disrupt bacterial membranes and induce bacterial apoptosis. Therefore, the mechano-catalytic coupling property of this NiCo2 O4 nanozyme allows for an extensive and efficient antibacterial application, with no concerns of antimicrobial resistance. This work suggests a promising strategy for the rational design of advanced antibacterial materials by mimicking biological antibiosis.


Assuntos
Materiais Biomiméticos , Nanoestruturas , Animais , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/química , Peroxidases , Oxirredutases , Antibacterianos/farmacologia , Nanoestruturas/química
5.
Environ Sci Technol ; 58(1): 859-870, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38060830

RESUMO

The efficient removal of the highly toxic arsine gas (AsH3) from industrial tail gases under mild conditions remains a formidable challenge. In this study, we utilized the confinement effect of defective carbon nanotubes to fabricate a CuO cluster catalyst (CuO/ACNT), which exhibited a capacity much higher than that of CuO supported on pristine multiwalled carbon nanotubes (MWCNT) (CuO/PCNT) for catalytically oxidizing AsH3 under ambient conditions. The experimental and theoretical results show that nitric acid steam treatment could induce MWCNT surface structural defects, which facilitated more stable anchoring of CuO and then improved the oxygen activation ability, therefore leading to excellent catalytic performance. Density functional theory (DFT) calculations revealed that the catalytic oxidation of AsH3 proceeded through stepwise dehydrogenation and subsequent recombination with oxygen to form As2O3 as the final product.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Temperatura , Gases , Oxigênio , Oxirredução
6.
ACS Appl Mater Interfaces ; 16(1): 605-613, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38131347

RESUMO

The catalytic oxidation of carbon monoxide (CO) under ambient conditions plays a crucial role in the abatement of indoor CO, which poses risks to human health. Despite the notable activity exhibited by Pt-based catalysts in CO oxidation, their efficacy is usually diminished by the CO self-poisoning issue. In this work, three different Pt/CeO2-based catalysts, which have distinct coordinative environments of Pt but an identical Pt/CeO2 substrate structure, were synthesized by activating the catalyst with CO using different temperatures and durations. Compared with clean and graphite-covered Pt on CeO2, the one modified by epoxy carbon showed higher activity and stability. The combination of characterizations and density functional theory modeling demonstrated that the clean Pt on CeO2 rapidly deactivated due to the CO self-poisoning albeit high initial activity, and conversely, low initial activity was observed for the more stable graphite-covered catalyst due to the obstruction of the Pt site. In contrast, epoxy carbon species on Pt shifted the d-band of Pt to lower energy, weakening the Pt-CO binding strength. Such a modification mitigated the self-poisoning effect while maintaining ample active sites and enabling the complete oxidative removal of CO under ambient conditions. This work may provide a general approach to tackling the self-poisoning issue.

7.
J Environ Sci (China) ; 138: 709-718, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135433

RESUMO

Formaldehyde (HCHO) is a common indoor pollutant that is detrimental to human health. Its efficient removal has become an urgent demand to reduce the public health risk. In this work, Ag-MnOx-based catalysts were prepared and activated under different atmosphere (i.e., air, hydrogen (H2) and carbon monoxide (CO)) for efficient oxidation of HCHO. The catalyst activated with CO (Ag/Mn-CO) displayed the highest activity among the tested samples with 90% conversion at 100°C under a gas space velocity of 75,000 mL/(gcat·hr). Complementary characterizations demonstrate that CO reduction treatment resulted in synergically regulated content of surface oxygen on support to adsorb/activate HCHO and size of Ag particle to dissociate oxygen to oxidize the adsorbed HCHO. In contrast, other catalysts lack for either abundant surface oxygen species or metallic silver with the appropriate particle size, so that the integrate activity is limited by one specific reaction step. This study contributes to elucidating the mechanisms regulating the oxidation activity of Ag-based catalysts.


Assuntos
Oxigênio , Prata , Humanos , Óxidos , Oxirredução , Formaldeído , Catálise
8.
J Dent Sci ; 18(4): 1604-1611, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799907

RESUMO

Background/purpose: With the development of computer-assisted surgery, digital guide plate was widely used in vascularized bone flap grafts for mandibular reconstruction. The purpose of this study was to design and manufacture a digital guide plate with drill-hole sharing for mandibular reconstruction and assess for surgical accuracy. Materials and methods: 17 patients that required mandibular reconstruction using fibula free flap or iliac crest free flap were included in the study. The computed tomography (CT) data of the patient's mandible and pelvis or fibula were acquired preoperatively. A surgical simulation was then performed using computer-aided surgical simulation (CASS) technology based on above date, which allowed the design of two cutting guide and a repositioning guide for mandibular reconstruction. After surgery, the accuracy of reconstruction was evaluated by superimposing the postoperative image onto the preoperative image of mandible, recording the linear and angular deviation of landmarks, measuring the differences between the planned and actual outcomes. Results: The osteotomy and repositioning of fibula or iliac crest segments were successfully performed as planned using surgical guides. The digital guide plate with drill-hole sharing showed excellent accuracy, When the iliac crest or the fibula free flap were used for mandibular reconstruction, the largest mean differences between the preoperative and postoperative were 1.11 mm and 2.8° or 1.3 mm and 3.87°. Conclusion: The digital guide plate with drill-hole sharing designed preoperatively provides a reliable method of for the mandibular reconstruction. This can assist surgeons in accurately performing osteotomy and repositioning fibula or iliac crest segments during the mandibular reconstruction.

9.
Proc Natl Acad Sci U S A ; 120(39): e2308435120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37733739

RESUMO

GPR34 is a functional G-protein-coupled receptor of Lysophosphatidylserine (LysoPS), and has pathogenic roles in numerous diseases, yet remains poorly targeted. We herein report a cryo-electron microscopy (cryo-EM) structure of GPR34 bound with LysoPS (18:1) and Gi protein, revealing a unique ligand recognition mode with the negatively charged head group of LysoPS occupying a polar cavity formed by TM3, 6 and 7, and the hydrophobic tail of LysoPS residing in a lateral open hydrophobic groove formed by TM3-5. Virtual screening and subsequent structural optimization led to the identification of a highly potent and selective antagonist (YL-365). Design of fusion proteins allowed successful determination of the challenging cryo-EM structure of the inactive GPR34 complexed with YL-365, which revealed the competitive binding of YL-365 in a portion of the orthosteric binding pocket of GPR34 and the antagonist-binding-induced allostery in the receptor, implicating the inhibition mechanism of YL-365. Moreover, YL-365 displayed excellent activity in a neuropathic pain model without obvious toxicity. Collectively, this study offers mechanistic insights into the endogenous agonist recognition and antagonist inhibition of GPR34, and provides proof of concept that targeting GPR34 represents a promising strategy for disease treatment.


Assuntos
Inibição Psicológica , Neuralgia , Humanos , Microscopia Crioeletrônica , Ligação Competitiva
10.
Discov Oncol ; 14(1): 166, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668846

RESUMO

AIMS: This study aims to explore the role of exosomes from cancer-associated fibroblasts (CAFs) induced by PDGF-BB in promoting the malignancy of oral squamous cell carcinoma (OSCC) and provide new insight into the mechanism of OSCC progression and its treatment. MAIN METHODS: Exosomes were extracted from human oral mucosa fibroblasts (hOMFs) and CAFs. Differentially expressed miRNAs of exosomes between hOMFs and CAFs were analysed using high-throughput sequencing and self-programmed R software. Cal-27, a human tongue squamous carcinoma cell line, was treated with exosomes. Differentially expressed miRNAs between clinical cancer tissues and adjacent tissues and between hOMF and CAF exosomes were verified by qRT‒PCR. The effect of miR-3529-3p on Cal-27 cells was clarified by overexpressing or knocking down miR-3529-3p in Cal-27 cells. Sample expression and differentially expressed miRNA expression were compared between cancer and paracarcinoma tissues. KEY FINDINGS: We found that exosomes from CAFs (CAF-Exos) were internalized by tongue squamous carcinoma cells and promoted their proliferation, migration, invasion, and antiapoptotic effects. MiR-3529-3p was a significant differentially expressed miRNA between CAF-Exos and exosomes from hOMFs (hOMF-Exos). The overexpression of miR-3529-3p promoted proliferation, migration, and invasion and inhibited apoptosis of Cal-27 cells. SIGNIFICANCE: This study explores the role of PDGF-BB-induced CAFs in promoting malignancy in OSCC. This study will provide new insight into the mechanism of OSCC progression and its treatment.

12.
J Environ Sci (China) ; 134: 117-125, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673527

RESUMO

Formaldehyde (HCHO) and carbon monoxide (CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we activated Pt-MnO2 under different conditions for highly active oxidation of HCHO and CO, and the catalyst activated under CO displayed superior performance. A suite of complementary characterizations revealed that the catalyst activated with CO created the highly dispersed Pt nanoparticles to maintain a more positively charged state of Pt, which appropriately weakens the Mn-O bonding strength in the adjacent region of Pt for efficient supply of active oxygen during the reaction. Compared with other catalysts activated under different conditions, the CO-activated Pt-MnO2 displays much higher activity for oxidation of HCHO and CO. This research contributes to elucidating the mechanism for regulating the oxidation activity of Pt-based catalyst.


Assuntos
Poluentes Atmosféricos , Oxigênio , Humanos , Compostos de Manganês , Óxidos , Espécies Reativas de Oxigênio
13.
J Environ Sci (China) ; 134: 77-85, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37673535

RESUMO

Mineralization of benzene, toluene, and xylene (BTX) with high efficiency at room temperature is still a challenge for the purification of indoor air. In this work, a foam Ti/Sb-SnO2/ß-PbO2 anode catalyst was prepared for electrocatalytically oxidizing gaseous toluene in an all-solid cell at ambient temperature. The complex Ti/Sb-SnO2/ß-PbO2 anode, which was prepared by sequentially deposing Sb-SnO2 and ß-PbO2 on a foam Ti substrate, shows high electrocatalytic oxidation efficiency of toluene (80%) at 7 hr of reaction and high CO2 selectivity (94.9%) under an optimized condition, i.e., a cell voltage of 2.0 V, relative humidity of 60% and a flow rate of 100 mL/min. The better catalytic performance can be ascribed to the high production rate of ⋅OH radicals from discharging adsorbed water and the inhibition of oxygen evolution on the surface of foam Ti/Sb-SnO2/ß-PbO2 anode when compared with the foam Ti/Sb-SnO2 anode. Our results demonstrate that prepared complex electrodes can be potentially used for electrocatalytic removal of gaseous toluene at room temperature with a good performance.


Assuntos
Gases , Titânio , Oxirredução , Eletrodos , Tolueno
14.
Nat Commun ; 14(1): 3944, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402751

RESUMO

Noble metals have been extensively employed in a variety of hydrotreating catalyst systems for their featured functionality of hydrogen activation but may also bring side reactions such as undesired deep hydrogenation. It is crucial to develop a viable approach to selectively inhibit side reactions while preserving beneficial functionalities. Herein, we present modifying Pd with alkenyl-type ligands that forms homogeneous-like Pd-alkene metallacycle structure on the heterogeneous Pd catalyst to achieve the selective hydrogenolysis and hydrogenation. Particularly, a doped alkenyl-type carbon ligand on Pd-Fe catalyst is demonstrated to donate electrons to Pd, creating an electron-rich environment that elongates the distance and weakens the electronic interaction between Pd and unsaturated C of the reactants/products to control the hydrogenation chemistry. Moreover, high H2 activation capability is maintained over Pd and the activated H is transferred to Fe to facilitate C-O bond cleavage or directly participate in the reaction on Pd. The modified Pd-Fe catalyst displays comparable C-O bond cleavage rate but much higher selectivity (>90%) than the bare Pd-Fe (<50%) in hydrotreating of diphenyl ether (DPE, modelling the strongest C-O linkage in lignin) and enhanced ethene selectivity (>90%) in acetylene hydrogenation. This work sheds light on the controlled synthesis of selective hydrotreating catalysts via mimicking homogeneous analogues.

15.
Langmuir ; 39(24): 8503-8515, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37284830

RESUMO

Catalytic oxidation has been extensively studied as a promising technology for the removal of toluene from industrial waste gases and indoor air. However, the debate regarding the oxidation mechanism is far from resolved. CexMn1-xO2 catalysts with different mixing ratios are prepared by the sol-gel method and found to exhibit better catalytic activities for toluene oxidation than a single oxide. Characterizations and theoretical calculations reveal that the doped Mn increases the number of oxygen vacancies and the ability of oxygen vacancies to activate aromatic rings, which promotes the rate-determining step of toluene oxidation, i.e., ring-opening reactions. The oxidation products detected by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and Vocus proton transfer reaction mass spectrometry (Vocus-PTR-MS) show that the doped Mn significantly improves the ring-opening efficiency and subsequently yields more short-chain products, such as pyruvic acid and acetic acid. A comprehensive oxidation pathway of toluene is refined in this work.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36754841

RESUMO

Catalytic ozonation has gained considerable interest in volatile organic compound (VOC) elimination due to its mild reaction conditions. However, the low activity and mineralization rate of VOCs over catalysts hinder its practical application. Herein, a series of α-MnO2 nanowire catalysts were prepared via thermal annealing treatment at various temperatures to tailor defect species. Numerous characterization techniques were used and combined to investigate the relationship between activity and microstructure. PALS and XAFS indicated that more unsaturated manganese and oxygen vacancies, especially surface oxygen vacancy clusters, were produced in α-MnO2 under the optimal high calcination temperature. As a result, MnO2-600 was found to exhibit the best-ever performance in toluene conversion (95%) and mineralization rate (89.5%) at 20 °C, making it a promising candidate for practical use. The roles of these defects in manipulating the reactive oxygen species of α-MnO2 were clarified by quantifying the amounts of reactive oxygen species by quenching experiments and density functional theory calculations. 1O2 and ·OH species generated in the vicinity of oxygen vacancy clusters, especially the dimer oxygen vacancy cluster, were identified as key oxygen species in the abatement of toluene. This study provides a facile method to engineer the microstructure of MnO2 by means of the manipulation of oxygen vacancies and an in-depth understanding of their roles in the catalytic ozonation of VOC.

17.
Environ Sci Technol ; 57(2): 1123-1133, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36647680

RESUMO

The miscellaneous volatile organic compounds (VOCs) in industrial flue gas streams usually demonstrate significant mutual inhibition effects, and the behavior of a particular VOC in mixtures is not clear, which hinders the application of catalytic technology. This study examines the catalytic oxidation and mixing effects of representative VOCs in industrial exhausts, consisting of acetone (AC), ethyl acetate (EA), and toluene (Tol), on common Mn-based catalysts (e.g., MnO2, Mn2O3, LaMnO3, and Mn3O4) by means of intrinsic activity evaluation, coadsorption, VOC temperature-programmed oxidation, in situ diffuse reflectance infrared Fourier transform spectroscopy, and gas chromatography-mass spectrometry. The results showed no inhibiting effect on the conversion of these VOCs when combusted together; instead, a significant mutual promotion effect was found, especially on Tol destruction, with a sharp decrease in the Tol T50 from 214 to 158 °C on MnO2. It is proposed for the first time that the addition of AC/EA in Tol combustion leads to the generation of o/m-methyl phenol, which changes the rate-determining step of the ring-opening process, thus elevating the conversion of Tol together with AC and EA in the mixture at low temperatures.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Óxidos/química , Compostos de Manganês/química , Oxirredução , Temperatura , Catálise , Tolueno/análise , Tolueno/química
18.
RSC Adv ; 13(3): 1627-1639, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688065

RESUMO

In this work, a novel alkali lignin-based adsorption material, alkali lignin-based poly(tetraethylene pentamine-pyrogallol) (AL-PTAP), was prepared using a Mannich reaction and catechol-amine reaction for removal of Cr(vi). It was characterized by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The effects of tetraethylene pentamine (TEPA) dosage, pyrogallol (PL) dosage, contact time, pH, temperature and other factors on the adsorption behavior of the adsorbent were systematically investigated. These experimental data show that the adsorption behavior conforms to the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity is 769.2 mg g-1 at 303 K, which is much higher than that of alkali lignin (AL). AL-PTAP can achieve a removal rate of almost 100% for Cr(vi) solutions with a concentration of less than 90 mg L-1 at 1 min. Furthermore, the toxic Cr(vi) is partly reduced to nontoxic Cr(iii) during the adsorption process. Therefore, AL-PTAP is a fast and efficient alkali lignin-based adsorbent, which is expected to improve the utilization value of alkali lignin in Cr(vi) wastewater treatment.

19.
Environ Sci Technol ; 57(7): 2918-2927, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36691294

RESUMO

To improve the reactivity and lifetime of catalysts in the catalytic ozonation of toluene, a simple strategy was provided to regulate the morphology and microstructure of δ-MnO2 via the hydrothermal reaction temperature. The effects of the reaction temperature and the ozone to toluene concentration ratio on the catalyst performance were investigated. The optimized MnO2-260 catalyst prepared at the limiting hydrothermal temperature (260 °C) showed high catalytic activity (XTol = 95%) and excellent stability (1200 min) at the approximately ambient temperature of 40 °C, which was superior to the results in previous studies. The structure and morphology of δ-MnO2 were characterized by extended X-ray absorption fine structure, X-ray diffraction, scanning electron microscopy, positron annihilation lifetime spectroscopy, electron spin resonance, and other techniques. Experimental results and density functional theory calculations were in agreement that surface oxygen vacancy clusters, especially surface oxygen dimer vacancies, are critical in ozone activation. Oxygen vacancies can facilitate the adsorption and activation of O3 to generate reactive oxygen species (ROS, including 1O2, O2-, and •OH), leading to superior ozonation activity to degrade toluene and intermediates. Meanwhile, free radical detection and scavenger tests indicated that •OH is the primary ROS during toluene ozonation rather than 1O2 or O2-.


Assuntos
Óxidos , Ozônio , Óxidos/química , Espécies Reativas de Oxigênio , Compostos de Manganês/química , Tolueno , Oxigênio , Catálise , Espectroscopia de Ressonância de Spin Eletrônica
20.
J Environ Sci (China) ; 125: 95-100, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375968

RESUMO

Pd/Al2O3 was pretreated by CO, H2 and NaBH4 reduction, respectively. The reduced catalysts were tested for o-xylene oxidation and characterized by power X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and temperature-programmed decomposition of palladium hydride (TPDH). The characterizations indicate the pretreatments lead to distinct Pd particle sizes and amount of surface activated oxygen species, which are responsible for the catalytic performance. Compared with H2 and NaBH4 reduction methods, CO reduction shows a strong interaction between Pd and Al2O3 with smaller Pd particle size and more surface activated oxygen. It exhibited excellent catalytic performance, complete oxidation of 50 ppmV o-xylene at 85°C with a WHSV of 60,000 mL/(g∙hr).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...