Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(11): 18800-18811, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859029

RESUMO

In sixth generation (6G) communications, terahertz (THz) communication is one of the most important technologies in the future due to its ultra-bandwidth, where hybrid beamforming has been widely used to solve the severe transmission attenuation in the THz band. However, the use of frequency-flat phase shifters in hybrid beamforming leads to the beam split effect. To solve the beam split influence, we propose a novel optical true time delay compensation network (OTTDCN)-based phase precoding structure with low power consumption. In the proposed scheme, the OTTDCN pre-generates multiple beam compensation modes to achieve phase compensation for different frequencies. As a result, the compensated beams can be reoriented toward the target direction at different frequencies. Moreover, a low-complexity beam compensation mode-based hybrid precoding algorithm is proposed, where the selection of the optimal beam compensation modes used for all radio-frequency (RF) chains with finite beam compensation modes is considered. The results show that the OTTDCN-based phase precoding scheme can effectively alleviate the beam split effect with low power consumption and achieve near-optimal performance.

2.
Opt Express ; 32(2): 1595-1608, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297708

RESUMO

The network traffic of data centers (DCs) has increased unprecedentedly with the rapid development of digital economy. However, the data transmission faces security threats in the distributed optical interconnection and intensive interaction of DC networks. In this paper, we propose a chaotic phase noise-like encryption algorithm using geometric shaping (GS) for coherent DC interconnections (DCIs). A GS constellation is used to improve transmission performance, and it is combined with coherent equalization algorithms to improve security performance. Then, a chaotic encryption is designed based on phase noise-like transformation (PNLT). The data are effectively scrambled, and the confusion level of phase can be increased. Finally, 216 Gb/s 8-quadrature amplitude modulation (8-QAM) encrypted data are successfully verified on a 240 km transmission link of DCIs. The results show that this scheme can achieve a bit error rate (BER) performance gain of 1.1 dB and provide a highly compatible solution for realizing security enhanced DCIs.

3.
Opt Lett ; 48(3): 684-687, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723563

RESUMO

We propose a chaotic region-optimized probabilistic constellation shaping (CRPCS) scheme to enhance the security and the resistance to turbulence for free-space optical (FSO) communications. For this approach, a four-dimensional hyperchaotic system generates a pseudorandom sequence to rotate and encrypt the constellation. Constellation distribution of short pseudorandom sequences behaves as the law of a non-uniform character. Grouping long pseudorandom sequences and counting the characteristics of constellation distribution can realize probabilistic constellation shaping with low and fixed redundant information. We demonstrate a 56 Gbyte/s coherent FSO communication system based on log-normal and Gamma-Gamma turbulence models with a key space of 1075. The results show that the optical receiver sensitivity is improved by 0.3-1.1 dB, and the transmission distance is also improved by 3.2%-7.0% in different shaping cases.

4.
Opt Express ; 30(14): 25339-25355, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237066

RESUMO

In this paper, a novel three-dimensional selective probabilistic shaping (3D-SPS) and chaos-based multi-stage encryption scheme is proposed for physical layer security enhancement and transmission performance improvement in orthogonal frequency division multiplexing-based passive optical network (OFDM-PON). On the basis of inherent randomness of symbol sub-sequences with low granularity, the SPS algorithm is performed on the employed cubic constellation within each sub-sequence. Consequently, the probability distribution of inner points significantly increases after the constellation region exchange according to various rules. The generated compressed shaping information (CSI) is encrypted and used as the synchronization head for transmission. Furthermore, 3D scrambling is performed while maintaining the shaping effect. The encrypted signals of 35.3 Gb/s are successfully transmitted over a 25-km standard single-mode fiber (SSMF) and a back-to-back (BTB) system. The results show that by selecting the appropriate system parameter, the proposed scheme can provide about 2.4 dB modulation gain on the received optical power at a bit error rate (BER) of 10‒3 compared with a conventional quadrature amplitude modulation (QAM) signal under the same bit rate, and 0.9 dB shaping gain is brought due to the SPS. The encryption method possesses a relatively low computational complexity and sufficient key space of 10120 is introduced to resist exhaustive attack.

5.
Opt Express ; 30(11): 18310-18319, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221635

RESUMO

A physical layer key distribution scheme based on chaotic encryption and signal synchronization is proposed in this paper, which can achieve secure key distribution and enhance the security of an orthogonal frequency division multiplexing based passive optical network (OFDM-PON). The key is embedded into the synchronization header and then encrypted by using chaos. The receiver needs to utilize the correct chaotic parameters to successfully decrypt the synchronization information and extract the key. An experiment is conducted to verify the availability of this method by setting key sequences of various length over different transmission distances. The signals of 35.29 Gb/s are successfully transmitted over 5 km, 15 km and 25 km standard single-mode fiber (SSMF), respectively. It is proved that the proposed scheme is feasible and compatible with the traditional encryption algorithms, and it has almost no effect on the synchronization performance, which can then distribute keys with the sending signals without occupying additional channel resources and enhance the security performance of OFDM-PON simultaneously.

6.
Sci Rep ; 12(1): 16523, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192488

RESUMO

With the arrival of the age of big data, the amount and types of data in the process of information transmission have increased significantly, and the full-disk encryption mode used by traditional encryption algorithms has certain limitations of the times. In order to further improve the bandwidth efficiency of digital images in the transmission process and the information effectiveness of digital image transmission, this paper proposes an algorithm of high-quality restoration image encryption using DCT frequency-domain compression coding and chaos. Firstly, the image hash value is used for the generation of an encryption key with plaintext correlation, then lightweight chaos is generated based on the key to obtain a pseudo-random sequence. Secondly, the image is partitioned into subblock, and converted from time domain into frequency domain by employing Discrete Cosine Transform (DCT) on each block, then perform quantization operation based on frequency domain information to obtain DCT coefficient matrix. Thirdly, the direct current (DC) coefficients and alternating current (AC) coefficients are extracted in the DCT coefficient matrix and compressed by different encoding methods to obtain two sets of bitstream containing DC coefficient and AC coefficient information. Fourthly, permute the DC coefficient bit stream by the chaotic sequence, and reconstruct it with the AC coefficient bit stream to obtain the frequency domain ciphertext image. Finally, the chaotic sequence is used to diffuse ciphertext, and the processed hash value is hidden in the ciphertext to obtain the final ciphertext. The theoretical and experimental analysis showed that the key length reaches 341 bits, and the PSNR value of the restored image is close to 60, all of which satisfy the theoretical value. Therefore, the algorithm has the characteristics of high compression rate, high-quality image restoration large key space, strong plaintext sensitivity, strong key sensitivity and so on. Our method proposed in this paper is expected to provide a new idea for confidential and secure communication in the age of big data.

7.
Nanomaterials (Basel) ; 12(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079950

RESUMO

In recent years, two-dimensional molybdenum disulfide (MoS2) has attracted extensive attention in the application field of next-generation electronics. Compared with single-layer MoS2, bilayer MoS2 has higher carrier mobility and has more promising applications for future novel electronic devices. Nevertheless, the large-scale low-cost synthesis of high-quality bilayer MoS2 still has much room for exploration, requiring further research. In this study, bilayer MoS2 crystals grown on soda-lime glass substrate by sodium chloride (NaCl)-assisted chemical vapor deposition (CVD) were reported, the growth mechanism of NaCl in CVD of bilayer MoS2 was analyzed, and the effects of molybdenum trioxide (Mo) mass and growth pressure on the growth of bilayer MoS2 under the assistance of NaCl were further explored. Through characterization with an optical microscope, atomic force microscopy and Raman analyzer, the domain size of bilayer MoS2 prepared by NaCl-assisted CVD was shown to reach 214 µm, which is a 4.2X improvement of the domain size of bilayer MoS2 prepared without NaCl-assisted CVD. Moreover, the bilayer structure accounted for about 85%, which is a 2.1X improvement of bilayer MoS2 prepared without NaCl-assisted CVD. This study provides a meaningful method for the growth of high-quality bilayer MoS2, and promotes the large-scale and low-cost applications of CVD MoS2.

8.
Nanomaterials (Basel) ; 12(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35957148

RESUMO

Two-dimensional molybdenum disulfide (MoS2) has attracted significant attention for next-generation electronics, flexible devices, and optical applications. Chemical vapor deposition is the most promising route for the production of large-scale, high-quality MoS2 films. Recently, the chemical vapor deposition of MoS2 films on soda-lime glass has attracted great attention due to its low cost, fast growth, and large domain size. Typically, a piece of Mo foil or graphite needs to be used as a buffer layer between the glass substrates and the CVD system to prevent the glass substrates from being fragmented. In this study, a novel method was developed for synthesizing MoS2 on glass substrates. Inert Al2O3 was used as the buffer layer and high-quality, uniform, triangular monolayer MoS2 crystals with domain sizes larger than 400 µm were obtained. To demonstrate the advantages of glass/Al2O3 substrates, a direct comparison of CVD MoS2 on glass/Mo and glass/Al2O3 substrates was performed. When Mo foil was used as the buffer layer, serried small bilayer islands and bright core centers could be observed on the MoS2 domains at the center and edges of glass substrates. As a control, uniform MoS2 crystals were obtained when Al2O3 was used as the buffer layer, both at the center and the edge of glass substrates. Raman and PL spectra were further characterized to show the merit of glass/Al2O3 substrates. In addition, the thickness of MoS2 domains was confirmed by an atomic force microscope and the uniformity of MoS2 domains was verified by Raman mapping. This work provides a novel method for CVD MoS2 growth on soda-lime glass and is helpful in realizing commercial applications of MoS2.

9.
Opt Lett ; 47(11): 2662-2665, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648899

RESUMO

A microwave photonic channelization receiver is a promising technology for broadband radio frequency (RF) signal monitoring and reception. In this Letter, by exploiting acousto-optic frequency shifters (AOFSs), a microwave photonic channelization receiver is proposed. The proposed microwave photonic channelized receiver can reduce dual coherent optical frequency comb (OFC) generators with detuning frequency spacing into a single OFC generator. To verify the feasibility of the proposed channelization scheme, a broadband RF signal with 3.2 GHz bandwidth is channelized into eight narrowband RF signals with 0.4 GHz bandwidth. Moreover, we investigate the effect of the tuning error imposed by AOFSs, where the error vector magnitude (EVM) of subchannels is obtained by channelizing the four 16-quadrature amplitude modulation (16-QAM) signals into four subchannels.

10.
Micromachines (Basel) ; 13(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744562

RESUMO

Electrowetting display (EWD) is a new type of paper-like reflective display based on colored oil, which has gradually become one of the most potential electronic papers with low power consumption, fast response, and full color. However, oil backflow can occur in EWDs, which makes it difficult to maintain a stable aperture ratio. In order to improve the stability of the aperture ratio of EWDs, a new driving waveform was proposed based on analyzing the phenomenon of oil backflow. The driving waveform was composed of a shrinking stage and a driving stage. Firstly, a threshold voltage of oil splitting was calculated by analyzing the luminance curve of EWDs, which were driven by different direct current (DC) voltages. Then, an exponential function waveform, which increased from the threshold voltage, was applied to suppress oil splitting. Finally, a periodic signal combined with a reset signal with a DC signal was applied during the driving stage to maintain a stable aperture ratio display. Experimental results showed that the charge trapping effect could be effectively prevented by the proposed driving waveform. Compared with an exponential function waveform, the average luminance value was increased by 28.29%, and the grayscale stability was increased by 13.76%. Compared to a linear function waveform, the aperture ratio was increased by 10.44% and the response time was reduced by 20.27%.

11.
Entropy (Basel) ; 24(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37420352

RESUMO

In order to further improve the information effectiveness of digital image transmission, an image-encryption algorithm based on 2D-Logistic-adjusted-Sine map (2D-LASM) and Discrete Wavelet Transform (DWT) is proposed. First, a dynamic key with plaintext correlation is generated using Message-Digest Algorithm 5 (MD5), and 2D-LASM chaos is generated based on the key to obtain a chaotic pseudo-random sequence. Secondly, we perform DWT on the plaintext image to map the image from the time domain to the frequency domain and decompose the low-frequency (LF) coefficient and high-frequency (HF) coefficient. Then, the chaotic sequence is used to encrypt the LF coefficient with the structure of "confusion-permutation". We perform the permutation operation on HF coefficient, and we reconstruct the image of the processed LF coefficient and HF coefficient to obtain the frequency-domain ciphertext image. Finally, the ciphertext is dynamically diffused using the chaotic sequence to obtain the final ciphertext. Theoretical analysis and simulation experiments show that the algorithm has a large key space and can effectively resist various attacks. Compared with the spatial-domain algorithms, this algorithm has great advantages in terms of computational complexity, security performance, and encryption efficiency. At the same time, it provides better concealment of the encrypted image while ensuring the encryption efficiency compared to existing frequency-domain methods. The successful implementation on the embedded device in the optical network environment verifies the experimental feasibility of this algorithm in the new network application.

12.
Membranes (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34940421

RESUMO

Electrowetting displays (EWDs) are one of the most potential electronic papers. However, they have the problem of oil film splitting, which could lead to a low aperture ratio of EWDs. In this paper, a driving waveform was proposed to reduce oil film splitting. The driving waveform was composed of a rising stage and a driving stage. First, the rupture voltage of oil film was analyzed by testing the voltage characteristic curve of EWDs. Then, a quadratic function waveform with an initial voltage was applied at the rising stage to suppress oil film splitting. Finally, a square wave was applied at the driving stage to maintain the aperture ratio of EWDs. The experimental results show that the luminance was increased by 8.78% and the aperture ratio was increased by 4.47% compared with an exponential function driving waveform.

13.
Micromachines (Basel) ; 12(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34832718

RESUMO

The shortage of color in traditional electrophoretic displays (EPDs) can be compensated by three-color EPDs. However, the response time of black particles and white particles is increased. A new driving waveform based on the principle of three-color EPDs and electrophoresis theory was proposed to shorten the response time of black particles and white particles. The proposed driving waveform consisted of an erasing stage, an activation stage, a red driving stage, and a white or a black driving stage. The activation stage was mainly optimized in this paper. Firstly, the motion characteristics of the particles were analyzed using Stokes law and electrophoresis theory. Secondly, an optimal high frequency oscillation voltage was tested in order to improve the activity of the particles. Then, the influence of oscillation period and oscillation times on the activation stage were analyzed for optimizing the reference grayscale. According to the luminance of pixels, an oscillation period of 30 ms and an oscillation time of 30 were determined. The experimental results showed that the response time of black particles was shortened by 45%, and the response time of white particles was shortened by 40% compared with a traditional driving waveform.

14.
Opt Express ; 29(16): 25552-25569, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614885

RESUMO

A chaotic ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) encryption scheme is firstly proposed for security OFDM-WDM-PON in this paper. We adopt a dynamic key agreement based on the messenger RNA (mRNA) codebook to distribute the key, and the security and randomness of this key are enhanced by a pre-sharing key parameter set instead of transmission of a key directly. Also, the security key can be dynamically updated in real-time according to the needs of the users. The real (I) and imaginary (Q) parts of the QAM symbol matrix after modulation are encrypted by the correspondence between transfer RNA (tRNA) and amino acids and the selection mapping of DNA base complementary rules. Also, we add cubic permutation to ensure all data security encryption. The encrypted signals of 35.29 Gb/s on different wavelength channels are successfully demonstrated over a 25-km standard single-mode fiber (SSMF) and a back-to-back (BTB) system. It is proved that the proposed security OFDM-WDM-PON encryption scheme is compatible with the traditional WDM system, which can make full use of bandwidth resources and enhance the security with a large key space.


Assuntos
Aminoácidos , Segurança Computacional , DNA/química , Código Genético , RNA/química , Códon , Humanos , RNA Mensageiro/química
15.
Entropy (Basel) ; 23(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34441140

RESUMO

In the current network and big data environment, the secure transmission of digital images is facing huge challenges. The use of some methodologies in artificial intelligence to enhance its security is extremely cutting-edge and also a development trend. To this end, this paper proposes a security-enhanced image communication scheme based on cellular neural network (CNN) under cryptanalysis. First, the complex characteristics of CNN are used to create pseudorandom sequences for image encryption. Then, a plain image is sequentially confused, permuted and diffused to get the cipher image by these CNN-based sequences. Based on cryptanalysis theory, a security-enhanced algorithm structure and relevant steps are detailed. Theoretical analysis and experimental results both demonstrate its safety performance. Moreover, the structure of image cipher can effectively resist various common attacks in cryptography. Therefore, the image communication scheme based on CNN proposed in this paper is a competitive security technology method.

16.
Nanomaterials (Basel) ; 11(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204492

RESUMO

As an atomically thin semiconductor, 2D molybdenum disulfide (MoS2) has demonstrated great potential in realizing next-generation logic circuits, radio-frequency (RF) devices and flexible electronics. Although various methods have been performed to improve the high-frequency characteristics of MoS2 RF transistors, the impact of the back-gate bias on dual-gate MoS2 RF transistors is still unexplored. In this work, we study the effect of back-gate control on the static and RF performance metrics of MoS2 high-frequency transistors. By using high-quality chemical vapor deposited bilayer MoS2 as channel material, high-performance top-gate transistors with on/off ratio of 107 and on-current up to 179 µA/µm at room temperature were realized. With the back-gate modulation, the source and drain contact resistances decrease to 1.99 kΩ∙µm at Vbg = 3 V, and the corresponding on-current increases to 278 µA/µm. Furthermore, both cut-off frequency and maximum oscillation frequency improves as the back-gate voltage increases to 3 V. In addition, a maximum intrinsic fmax of 29.7 GHz was achieved, which is as high as 2.1 times the fmax without the back-gate bias. This work provides significant insights into the influence of back-gate voltage on MoS2 RF transistors and presents the potential of dual-gate MoS2 RF transistors for future high-frequency applications.

17.
Micromachines (Basel) ; 12(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069735

RESUMO

Three-color electrophoretic displays (EPDs) have the advantages of multi-color display and low power consumption. However, their red particles have the disadvantage of long response time. In this paper, a driving waveform, which is based on electrophoresis theory and reference gray scale optimization, was proposed to shorten the response time of red particles in three-color EPDs. The driving waveform was composed of erasing stage, reference gray scale forming stage, red driving stage, and white or black driving stage. Firstly, the characteristics of particle motion were analyzed by electrophoresis theory and Stokes law. Secondly, the reference gray scale of the driving waveform was optimized to shorten the distance between red particles and a common electrode plate. Finally, an experimental platform was developed to test the performance of the driving waveform. Experimental results showed that the proposed driving waveform can shorten the response time of red particles by 65.57% and reduce the number of flickers by 66.67% compared with the traditional driving waveform.

18.
Micromachines (Basel) ; 12(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923705

RESUMO

Two-dimensional (2D) MoS2 have attracted tremendous attention due to their potential applications in future flexible high-frequency electronics. Bilayer MoS2 exhibits the advantages of carrier mobility when compared with monolayer mobility, thus making the former more suitable for use in future flexible high-frequency electronics. However, there are fewer systematical studies of chemical vapor deposition (CVD) bilayer MoS2 radiofrequency (RF) transistors on flexible polyimide substrates. In this work, CVD bilayer MoS2 RF transistors on flexible substrates with different gate lengths and gigahertz flexible frequency mixers were constructed and systematically studied. The extrinsic cutoff frequency (fT) and maximum oscillation frequency (fmax) increased with reducing gate lengths. From transistors with a gate length of 0.3 µm, we demonstrated an extrinsic fT of 4 GHz and fmax of 10 GHz. Furthermore, statistical analysis of 14 flexible MoS2 RF transistors is presented in this work. The study of a flexible mixer demonstrates the dependence of conversion gain versus gate voltage, LO power and input signal frequency. These results present the potential of CVD bilayer MoS2 for future flexible high-frequency electronics.

19.
Opt Express ; 29(3): 3669-3684, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33770962

RESUMO

In this paper, we propose chaotic compressive sensing (CS) encryption algorithms for orthogonal frequency division multiplexing passive optical network (OFDM-PON), aiming at compressing the transmitted data and enhancing the security of data transmission. Bitstream transmission using CS directly is restricted due to its inability to satisfy the sparsity in neither time nor frequency domain. While the sparsity of the transmitted data can be constructed when transmitting the multimedia. A sensor can be then used to identify whether the data is multimedia. If it is, the CS technique is used, and the sensor's result is set as side information inserted into the pilot and transmitted to the terminal simultaneously. For encryption processing, a 2-dimensional logistic-sine-coupling map (2D-LSCM) is used to generate pseudo-random numbers to construct the first row of a measurement matrix to encrypt the system. Four transform formats are then applied to generate the sparsity of the transmitted data. Due to the restriction of data transmission in the physical layer, the discrete cosine transform (DCT) is chosen to conduct the CS technique. Four approximation algorithms are also proposed to optimize the performance of compressing the length of bits. We find that 'Round + Set negative to 0' shows the best performance. The combination of this chaotic CS encryption technique with the OFDM-PON systems saves the bandwidth and improves the security.

20.
Entropy (Basel) ; 23(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672309

RESUMO

Fractional-order chaos has complex dynamic behavior characteristics, so its application in secure communication has attracted much attention. Compared with the design of fractional-order chaos-based cipher, there are fewer researches on security analysis. This paper conducts a comprehensive security analysis of a color image encryption algorithm using a fractional-order hyperchaotic system (CIEA-FOHS). Experimental simulation based on excellent numerical statistical results supported that CIEA-FOHS is cryptographically secure. Yet, from the perspective of cryptanalysis, this paper found that CIEA-FOHS can be broken by a chosen-plaintext attack method owing to its some inherent security defects. Firstly, the diffusion part can be eliminated by choosing some special images with all the same pixel values. Secondly, the permutation-only part can be deciphered by some chosen plain images and the corresponding cipher images. Finally, using the equivalent diffusion and permutation keys obtained in the previous two steps, the original plain image can be recovered from a target cipher image. Theoretical analysis and experimental simulations show that the attack method is both effective and efficient. To enhance the security, some suggestions for improvement are given. The reported results would help the designers of chaotic cryptography pay more attention to the gap of complex chaotic system and secure cryptosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...