Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
3.
World J Diabetes ; 15(3): 392-402, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591079

RESUMO

Diabetes affects about 422 million people worldwide, causing 1.5 million deaths each year. However, the incidence of diabetes is increasing, including several types of diabetes. Type 1 diabetes (5%-10% of diabetic cases) and type 2 diabetes (90%-95% of diabetic cases) are the main types of diabetes in the clinic. Accumulating evidence shows that the fibroblast growth factor (FGF) family plays important roles in many metabolic disorders, including type 1 and type 2 diabetes. FGF consists of 23 family members (FGF-1-23) in humans. Here, we review current findings of FGFs in the treatment of diabetes and management of diabetic complications. Some FGFs (e.g., FGF-15, FGF-19, and FGF-21) have been broadly investigated in preclinical studies for the diagnosis and treatment of diabetes, and their therapeutic roles in diabetes are currently under investigation in clinical trials. Overall, the roles of FGFs in diabetes and diabetic complications are involved in numerous processes. First, FGF intervention can prevent high-fat diet-induced obesity and insulin resistance and reduce the levels of fasting blood glucose and triglycerides by regulating lipolysis in adipose tissues and hepatic glucose production. Second, modulation of FGF expression can inhibit renal and cardiac fibrosis by regulating the expression of extracellular matrix components, promote diabetic wound healing process and bone repair, and inhibit cancer cell proliferation and migration. Finally, FGFs can regulate the activation of glucose-excited neurons and the expression of thermogenic genes.

4.
World J Hepatol ; 16(2): 294-299, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38495278

RESUMO

Oxidative stress disturbs the balance between the production of reactive oxygen species (ROS) and the detoxification biological process. It plays an important role in the development and progression of many chronic diseases. Upon exposure to oxidative stress or the inducers of ROS, the cellular nucleus undergoes some biological processes via different signaling pathways, such as stress adaption through the forkhead box O signaling pathway, inflammatory response through the IκB kinase/nuclear factor-κB signaling pathway, hypoxic response via the hypoxia-inducible factor/prolyl hydroxylase domain proteins pathway, DNA repair or apoptosis through the p53 signaling pathway, and antioxidant response through the Kelch-like ECH-associated protein 1/nuclear factor E2-related factor 2 signaling pathway. These processes are involved in many diseases. Therefore, oxidative stress has gained more attraction as a targeting process for disease treatment. Meanwhile, anti-oxidative stress agents have been widely explored in pre-clinical trials. However, only limited clinical trials are performed to evaluate the efficacy of anti-oxidative stress agents or antioxidants in diseases. In this letter, we further discuss the current clinical trials related to anti-oxidative stress treatment in different diseases. More pre-clinical studies and clinical trials are expected to use anti-oxidative stress strategies as disease treatment or dietary supplementation to improve disease treatment outcomes.

5.
World J Hepatol ; 16(2): 140-145, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38495285

RESUMO

Cytokines play pleiotropic roles in human health and disease by regulating both innate and adaptive immune responses. Interleukins (ILs), a large group of cytokines, can be divided into seven families, including IL-1, IL-2, IL-6, IL-8, IL-10, IL-12, and IL-17 families. Here, we review the functions of ILs in the pathogenesis and resolution of liver diseases, such as liver inflammation (e.g., IL-35), alcohol-related liver disease (e.g., IL-11), non-alcoholic steatohepatitis (e.g., IL-22), liver fibrosis (e.g., Il-17a), and liver cancer (e.g., IL-8). Overall, IL-1 family members are implicated in liver inflammation induced by different etiologies, such as alcohol consumption, high-fat diet, and hepatitis viruses. IL-2 family members mainly regulate T lymphocyte and NK cell proliferation and activation, and the differentiation of T cells. IL-6 family cytokines play important roles in acute phase response in liver infection, liver regeneration, and metabolic regulation, as well as lymphocyte activation. IL-8, also known as CXCL8, is activated in chronic liver diseases, which is associated with the accumulation of neutrophils and macrophages. IL-10 family members contribute key roles to liver immune tolerance and immunosuppression in liver disease. IL-12 family cytokines influence T-cell differentiation and play an essential role in autoimmune liver disease. IL-17 subfamilies contribute to infection defense, liver inflammation, and Th17 cell differentiation. ILs interact with different type I and type II cytokine receptors to regulate intracellular signaling pathways that mediate their functions. However, most clinical studies are only performed to evaluate IL-mediated therapies on alcohol and hepatitis virus infection-induced hepatitis. More pre-clinical and clinical studies are required to evaluate IL-mediated monotherapy and synergistic therapies.

6.
Eur J Pharm Biopharm ; 198: 114246, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479562

RESUMO

Immunotherapy has revolutionized cancer treatment by boosting the immune system and preventing disease escape mechanisms. Despite its potential, challenges like limited response rates and adverse immune effects impede its widespread clinical adoption. Ultrasound (US), known for its safety and effectiveness in tumor diagnosis and therapy, has been shown to significantly enhance immunotherapy when used with nanosystems. High-intensity focused ultrasound (HIFU) can obliterate tumor cells and elicit immune reactions through the creation of immunogenic debris. Low-intensity focused ultrasound (LIFU) bolsters tumor immunosuppression and mitigates metastasis risk by concentrating dendritic cells. Ultrasonic cavitation (UC) produces microbubbles that can transport immune enhancers directly, thus strengthening the immune response and therapeutic impact. Sonodynamic therapy (SDT) merges nanotechnology with immunotherapy, using specialized sonosensitizers to kill cancer cells and stimulate immune responses, increasing treatment success. This review discusses the integration of ultrasound-responsive nanosystems in tumor immunotherapy, exploring future opportunities and current hurdles.


Assuntos
Neoplasias , Terapia por Ultrassom , Humanos , Neoplasias/patologia , Ultrassonografia , Imunoterapia , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio
7.
Biomedicines ; 12(2)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38397901

RESUMO

Liver disease-related mortality is a major cause of death worldwide. Hepatic innate and adaptive immune cells play diverse roles in liver homeostasis and disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells. MDSCs can be broadly divided into monocytic MDSCs and polymorphonuclear or granulocytic MDSCs, and they functionally interact with both liver parenchymal and nonparenchymal cells, such as hepatocytes and regulatory T cells, to impact liver disease progression. The infiltration and activation of MDSCs in liver disease can be regulated by inflammatory chemokines and cytokines, tumor-associated fibroblasts, epigenetic regulation factors, and gut microbiota during liver injury and cancer. Given the pivotal roles of MDSCs in advanced liver diseases, they can be targeted to treat primary and metastatic liver cancer, liver generation, alcoholic and nonalcoholic liver disease, and autoimmune hepatitis. Currently, several treatments such as the antioxidant and anti-inflammatory agent berberine are under preclinical and clinical investigation to evaluate their therapeutic efficacy on liver disease and their effect on MDSC infiltration and function. Phenotypic alteration of MDSCs in different liver diseases that are in a model-dependent manner and lack special markers for distinct MDSCs are challenges for targeting MDSCs to treat liver disease. Multi-omics study is an option to uncover the features of disease-specific MDSCs and potential gene or protein targets for liver disease treatment. In summary, MDSCs play important roles in the pathogenesis and progression of liver disease by regulating both intrahepatic innate and adaptive immune responses.

9.
BMC Med Imaging ; 24(1): 33, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317076

RESUMO

BACKGROUND: To investigate the value of machine learning (ML)-based magnetic resonance imaging (MRI) radiomics in assessing tumor-infiltrating lymphocyte (TIL) levels in patients with oral tongue squamous cell carcinoma (OTSCC). METHODS: The study included 68 patients with pathologically diagnosed OTSCC (30 with high TILs and 38 with low TILs) who underwent pretreatment MRI. Based on the regions of interest encompassing the entire tumor, a total of 750 radiomics features were extracted from T2-weighted (T2WI) and contrast-enhanced T1-weighted (ceT1WI) imaging. To reduce dimensionality, reproducibility analysis by two radiologists and collinearity analysis were performed. The top six features were selected from each sequence alone, as well as their combination, using the minimum-redundancy maximum-relevance algorithm. Random forest, logistic regression, and support vector machine models were used to predict TIL levels in OTSCC, and 10-fold cross-validation was employed to assess the performance of the classifiers. RESULTS: Based on the features selected from each sequence alone, the ceT1WI models outperformed the T2WI models, with a maximum area under the curve (AUC) of 0.820 versus 0.754. When combining the two sequences, the optimal features consisted of one T2WI and five ceT1WI features, all of which exhibited significant differences between patients with low and high TILs (all P < 0.05). The logistic regression model constructed using these features demonstrated the best predictive performance, with an AUC of 0.846 and an accuracy of 80.9%. CONCLUSIONS: ML-based T2WI and ceT1WI radiomics can serve as valuable tools for determining the level of TILs in patients with OTSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias da Língua , Humanos , Radiômica , Projetos Piloto , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Linfócitos do Interstício Tumoral , Carcinoma de Células Escamosas/diagnóstico por imagem , Reprodutibilidade dos Testes , Neoplasias da Língua/diagnóstico por imagem , Imageamento por Ressonância Magnética , Aprendizado de Máquina , Estudos Retrospectivos
10.
Clin Transl Med ; 14(1): e1556, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38279874

RESUMO

BACKGROUND: Human papillomavirus (HPV) integration into the host genome is an important factor in HPV(+)OPSCC carcinogenesis, in conjunction with HPV oncoproteins E6/E7. However, a well-studied investigation about virus-host interaction still needs to be completed. Our objective is to characterise HPV integration to investigate potential mechanisms of tumourigenesis independent of E6/E7 oncoproteins. MATERIALS AND METHODS: High-throughput viral integration detection was performed on 109 HPV(+)OPSCC tumours with relevant clinicopathological information. Of these tumours, 38 tumours underwent targeted gene sequencing, 29 underwent whole exome sequencing and 26 underwent RNA sequencing. RESULTS: HPV integration was detected in 94% of tumours (with a mean integration count of 337). Tumours occurring at the tonsil/oropharyngeal wall that exhibit higher PD-L1 expression demonstrated increased integration sites (p = .024). HPV exhibited a propensity for integration at genomic sites located within specific fragile sites (FRA19A) or genes associated with functional roles such as cell proliferation and differentiation (PTEN, AR), immune evasion (CD274) and glycoprotein biosynthesis process (FUT8). The viral oncogenes E2, E4, E6 and E7 tended to remain intact. HPV fragments displayed enrichment within host copy number variation (CNV) regions. However, insertions into genes related to altered homologous recombination repair were infrequent. Genes with integration had distinct expression levels. Fifty-nine genes whose expression level was affected by viral integration were identified, for example, EPHB1, which was reported to be involved in cellular protein metabolic process. CONCLUSIONS: HPV can promote oncogenesis through recurrent integration into functional host genome regions, leading to subsequent genomic aberrations and gene expression disruption. This study characterises viral integrations and virus-host interactions, enhancing our understanding of HPV-related carcinogenesis mechanisms.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Papillomavirus Humano , Infecções por Papillomavirus/genética , Variações do Número de Cópias de DNA , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Carcinogênese/genética
11.
Leukemia ; 38(3): 621-629, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38184753

RESUMO

MYC translocation occurs in 8-14% of diffuse large B-cell lymphoma (DLBCL), and may concur with BCL2 and/or BCL6 translocation, known as double-hit (DH) or triple-hit (TH). DLBCL-MYC/BCL2-DH/TH are largely germinal centre B-cell like subtype, but show variable clinical outcome, with IG::MYC fusion significantly associated with inferior survival. While DLBCL-MYC/BCL6-DH are variable in their cell-of-origin subtypes and clinical outcome. Intriguingly, only 40-50% of DLBCL with MYC translocation show high MYC protein expression (>70%). We studied 186 DLBCLs with MYC translocation including 32 MYC/BCL2/BCL6-TH, 75 MYC/BCL2-DH and 26 MYC/BCL6-DH. FISH revealed a MYC/BCL6 fusion in 59% of DLBCL-MYC/BCL2/BCL6-TH and 27% of DLBCL-MYC/BCL6-DH. Targeted NGS showed a similar mutation profile and LymphGen genetic subtype between DLBCL-MYC/BCL2/BCL6-TH and DLBCL-MYC/BCL2-DH, but variable LymphGen subtypes among DLBCL-MYC/BCL6-DH. MYC protein expression is uniformly high in DLBCL with IG::MYC, but variable in those with non-IG::MYC including MYC/BCL6-fusion. Translocation breakpoint analyses of 8 cases by TLC-based NGS showed no obvious genomic configuration that enables MYC transactivation in 3 of the 4 cases with non-IG::MYC, while a typical promoter substitution or IGH super enhancer juxtaposition in the remaining cases. The findings potentially explain variable MYC expression in DLBCL with MYC translocation, and also bear practical implications in its routine assessment.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Ativação Transcricional , Proteínas Proto-Oncogênicas c-bcl-6/genética , Linfoma Difuso de Grandes Células B/patologia , Translocação Genética , Genômica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
12.
Int Dent J ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38278714

RESUMO

OBJECTIVE: This study aimed to investigate the potential of fibroblast activation protein (FAP) as a biomarker in the progression of oral leukoplakia (OLK) carcinogenesis. This was achieved by evaluating FAP expression at different levels of the organisation, namely oral normal mucosa (NM), OLK, and oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: Altogether, 88 paraffin-embedded tissue samples were examined, including 55 cases of OLK, 13 cases of OSCC, and 20 cases of NM (control group). An exhaustive investigation was performed to examine FAP expression in NM, OLK, and OSCC tissues via immunohistochemistry (IHC). The relationship between FAP expression and clinical pathologic characteristics was analysed. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot (WB) also proved the expression of FAP in NM, OLK, and OSCC cells. Aberrant FAP expression in OLK and OSCC was explored using in vitro experiments. RESULTS: Immunohistochemical results showed that high FAP expression was significantly correlated with histopathologic grade (P = .038) but not correlated with age, sex, or region (P = .953, .622, and .108, respectively). The expression level of FAP in NM tissues (0.15 ± 0.01) was minimal, whereas it was observed in OLK (0.28 ± 0.04) and OSCC (0.39 ± 0.02) tissues with a noticeable increase in expression levels (P < .001). The expression level of FAP in OLK with severe abnormal hyperplasia (S-OLK) tissues (0.33 ± 0.04) was significantly higher than in OLK with mild abnormal hyperplasia (MI-OLK, 0.26 ± 0.02) and OLK with moderate abnormal hyperplasia (MO-OLK, 0.28 ± 0.03) tissues (P < .001 and P = .039, respectively). The results of RT-PCR illustrated that the relative expression of FAP mRNA in OLK cells (2.63 ± 0.62) was higher than in NM cells (0.87 ± 0.14), but lower than in OSCC cells (5.63 ± 1.06; P = .027 and .012, respectively). FAP expression was minimal in NM cells (0.78 ± 0.06), modest in OLK cells (1.04 ± 0.06), and significantly elevated in OSCC cells (1.61 ± 0.09) based on the results of WB (P < .001). CONCLUSIONS: Significant variations in FAP expression were observed in NM, OLK, and OSCC tissues and cells. These findings revealed that FAP may be a reliable biomarker for the early diagnosis and evaluation of OLK carcinogenesis.

13.
Oral Dis ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263601

RESUMO

OBJECTIVES: To compare the clinicopathological, molecular, and immune features of conventional and high-grade transformation (HGT) secretory carcinoma (SC) in salivary glands. MATERIALS AND METHODS: The clinicopathological data of 88 cases including 74 conventional SCs and 14 SCs with HGT were reviewed. Targeted next-generation sequencing was performed in 11 SCs with HGT and 7 conventional SCs. The level of PD-L1 and CD8+ TILs was determined by immunohistochemistry. RESULTS: Compared with the conventional group, the rates of nodal metastasis, local recurrence, distant metastasis and mortality were significantly higher in the HGT cohort. Mutations of ARID1A/B, KMT2A, HOXD13, NRG1 and ETV6 genes were identified in HGT SCs. A recurrent E307G mutation in GATA6 gene was also observed in two cases. Two deceased HGT patients with distant metastasis harboured NOTCH3 mutations. ETV6-RET translocation was prone to occur in the HGT SCs. Additionally, PD-L1 expression was low, and CD8+ TILs were sparse in most HGT cases. CONCLUSION: Our findings reveal novel gene alterations involved in the progression of HGT in SCs. Most HGT SCs patients cannot benefit from PD-L1 blocking and may be approached with a distinct treatment strategy including the lymph node dissection and application of molecular target drugs in precision oncology.

14.
Sci Rep ; 13(1): 21404, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049492

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a significant impact on the economy and public health worldwide. Therapeutic options such as drugs and vaccines for this newly emerged disease are eagerly desired due to the high mortality. Using the U.S. Food and Drug Administration (FDA) approved drugs to treat a new disease or entirely different diseases, in terms of drug repurposing, minimizes the time and cost of drug development compared to the de novo design of a new drug. Drug repurposing also has some other advantages such as reducing safety evaluation to accelerate drug application on time. Carvedilol, a non-selective beta-adrenergic blocker originally designed to treat high blood pressure and manage heart disease, has been shown to impact SARS-CoV-2 infection in clinical observation and basic studies. Here, we applied computer-aided approaches to investigate the possibility of repurposing carvedilol to combat SARS-CoV-2 infection. The molecular mechanisms and potential molecular targets of carvedilol were identified by evaluating the interactions of carvedilol with viral proteins. Additionally, the binding affinities of in vivo metabolites of carvedilol with selected targets were evaluated. The docking scores for carvedilol and its metabolites with RdRp were - 10.0 kcal/mol, - 9.8 kcal/mol (1-hydroxyl carvedilol), - 9.7 kcal/mol (3-hydroxyl carvedilol), - 9.8 kcal/mol (4-hydroxyl carvedilol), - 9.7 kcal/mol (5-hydroxyl carvedilol), - 10.0 kcal/mol (8-hydroxyl carvedilol), and - 10.1 kcal/mol (O-desmethyl carvedilol), respectively. Using the molecular dynamics simulation (100 ns) method, we further confirmed the stability of formed complexes of RNA-dependent RNA polymerase (RdRp) and carvedilol or its metabolites. Finally, the drug-target interaction mechanisms that contribute to the complex were investigated. Overall, this study provides the molecular targets and mechanisms of carvedilol and its metabolites as repurposed drugs to fight against SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Reposicionamento de Medicamentos , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , RNA Polimerase Dependente de RNA
15.
Shanghai Kou Qiang Yi Xue ; 32(3): 255-260, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37803979

RESUMO

PURPOSE: To summarize the CT and MR imaging features of carcinoma ex pleomorphic adenoma(Ca-ex-PA) in minor salivary gland, and analyze the correlation between various features and pathological classification. METHODS: Forty-three patients with Ca-ex-PA in minor salivary gland were collected. The CT and MRI findings were retrospectively analyzed and correlated with their pathological types. Fisher's exact test was used to analyze the correlation between various imaging features (tumor morphology, boundary, internal structure, bone invasion, cervical lymph node metastasis) and pathological types with SPSS 25.0 software package. RESULTS: Among the 43 patients with Ca-ex-PA, 83.7%(36/43) of the tumors were lobulated; 81.4%(35/43) showed cystic degeneration or necrosis, with heterogeneous enhancement. Coarse calcification or mixed calcification was found in 37.2%(16/43), 25.6%(11/43) had compressive absorption of adjacent bone. 75%(12/16) of type Ⅰ/Ⅱ tumors had regular morphology (round or oval), and 77.8%(21/27) of type Ⅲ tumors had irregular morphology, 93.8%(15/16) of type Ⅰ/Ⅱ tumors had well-defined margin and 66.7%(18/27) of type Ⅲ tumors had ill-defined margin. Osteolytic bone resorption occurred in 59.3%(16/27) of type Ⅲ tumors. The average maximum diameter of type Ⅰ/Ⅱ tumors was significantly shorter than that of type Ⅲ(P<0.05). Fisher's exact test showed the characteristics of tumor morphology, boundary and osteolytic bone resorption were related to pathological grouping(P<0.001). CONCLUSIONS: Most Ca-ex-PA in minor salivary glands is characterized by lobular and heterogeneous enhanced neoplasm on CT and MR imaging. A round or oval tumor with well-defined margin usually correlates with typeⅠ and Ⅱ, contrarily, an irregular mass with ill-defined margin and osteolytic bone destruction usually correlates with type Ⅲ. Combining the three characteristics of morphology, boundary and osteolysis is more helpful to distinguish type Ⅰ/Ⅱ and type Ⅲ tumors.


Assuntos
Adenoma Pleomorfo , Reabsorção Óssea , Carcinoma , Neoplasias das Glândulas Salivares , Humanos , Adenoma Pleomorfo/diagnóstico por imagem , Adenoma Pleomorfo/patologia , Glândulas Salivares Menores/diagnóstico por imagem , Glândulas Salivares Menores/patologia , Neoplasias das Glândulas Salivares/diagnóstico por imagem , Estudos Retrospectivos
16.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37895950

RESUMO

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection drove the global coronavirus disease 2019 (COVID-19) pandemic, causing a huge loss of human life and a negative impact on economic development. It is an urgent necessity to explore potential drugs against viruses, such as SARS-CoV-2. Silymarin, a mixture of herb-derived polyphenolic flavonoids extracted from the milk thistle, possesses potent antioxidative, anti-apoptotic, and anti-inflammatory properties. Accumulating research studies have demonstrated the killing activity of silymarin against viruses, such as dengue virus, chikungunya virus, and hepatitis C virus. However, the anti-COVID-19 mechanisms of silymarin remain unclear. In this study, multiple disciplinary approaches and methodologies were applied to evaluate the potential mechanisms of silymarin as an anti-viral agent against SARS-CoV-2 infection. In silico approaches such as molecular docking, network pharmacology, and bioinformatic methods were incorporated to assess the ligand-protein binding properties and analyze the protein-protein interaction network. The DAVID database was used to analyze gene functions, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment. TCMSP and GeneCards were used to identify drug target genes and COVID-19-related genes. Our results revealed that silymarin compounds, such as silybin A/B and silymonin, displayed triplicate functions against SARS-CoV-2 infection, including directly binding with human angiotensin-converting enzyme 2 (ACE2) to inhibit SARS-CoV-2 entry into the host cells, directly binding with viral proteins RdRp and helicase to inhibit viral replication and proliferation, and regulating host immune response to indirectly inhibit viral infection. Specifically, the targets of silymarin molecules in immune regulation were screened out, such as proinflammatory cytokines TNF and IL-6 and cell growth factors VEGFA and EGF. In addition, the molecular mechanism of drug-target protein interaction was investigated, including the binding pockets of drug molecules in human ACE2 and viral proteins, the formation of hydrogen bonds, hydrophobic interactions, and other drug-protein ligand interactions. Finally, the drug-likeness results of candidate molecules passed the criteria for drug screening. Overall, this study demonstrates the molecular mechanism of silymarin molecules against SARS-CoV-2 infection.

17.
Biomater Sci ; 11(21): 7203-7215, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37750690

RESUMO

Pelvic organ prolapse (POP) is one of the common diseases in middle-aged and elderly women, caused by weakened pelvic floor muscle ligament tissue support. Pelvic floor reconstruction with mesh implantation has been proven to be an effective treatment for POP. However, traditional non-degradable and inflexible pelvic floor implantation meshes have been associated with pain, vaginal infections, and the need for additional surgeries. In this study, novel meshes with pre-designed structures were fabricated with solution-based electrohydrodynamic printing (EHDP) technology, using a series of polycaprolactone/silk fibroin composites as bioinks. The PCL/SF mesh mechanical performances were particularly enhanced with the addition of silk II, leading it to obtain higher adaptability with soft tissue repair. The mesh containing SF showed more robust degradation performance in the in vitro degradation assay. Furthermore, biocompatibility tests conducted on mouse embryonic fibroblasts (NIH/3T3) revealed enhanced cell affinity. Finally, the biocompatibility and tissue repair properties of PCL/SF mesh were verified through the implantation of meshes in the muscle defect site of mice. The results demonstrated that the 3D printed PCL/SF mesh prepared by EHDP exhibits superior mechanical properties, biocompatibility, biodegradability, as well as ligament and muscle fiber repair ability. The novel implantable meshes are promising for curing POP.

18.
World J Hepatol ; 15(6): 755-774, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37397931

RESUMO

Liver fibrosis accompanies the progression of chronic liver diseases independent of etiologies, such as hepatitis viral infection, alcohol consumption, and metabolic-associated fatty liver disease. It is commonly associated with liver injury, inflammation, and cell death. Liver fibrosis is characterized by abnormal accumulation of extracellular matrix components that are expressed by liver myofibroblasts such as collagens and alpha-smooth actin proteins. Activated hepatic stellate cells contribute to the major population of myofibroblasts. Many treatments for liver fibrosis have been investigated in clinical trials, including dietary supplementation (e.g., vitamin C), biological treatment (e.g., simtuzumab), drug (e.g., pegbelfermin and natural herbs), genetic regulation (e.g., non-coding RNAs), and transplantation of stem cells (e.g., hematopoietic stem cells). However, none of these treatments has been approved by Food and Drug Administration. The treatment efficacy can be evaluated by histological staining methods, imaging methods, and serum biomarkers, as well as fibrosis scoring systems, such as fibrosis-4 index, aspartate aminotransferase to platelet ratio, and non-alcoholic fatty liver disease fibrosis score. Furthermore, the reverse of liver fibrosis is slowly and frequently impossible for advanced fibrosis or cirrhosis. To avoid the life-threatening stage of liver fibrosis, anti-fibrotic treatments, especially for combined behavior prevention, biological treatment, drugs or herb medicines, and dietary regulation are needed. This review summarizes the past studies and current and future treatments for liver fibrosis.

19.
Cell Biosci ; 13(1): 122, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393249

RESUMO

BACKGROUND: Salivary carcinoma ex pleomorphic adenoma (CXPA) is defined as a carcinoma that develops from benign pleomorphic adenoma (PA). Abnormally activated Androgen signaling pathway and amplification of HER-2/neu(ERBB-2) gene are known to be involved in CXPA tumorigenesis. Recent progress in tumour microenvironment research has led to identification that extracellular matrix (ECM) remodelling and increased stiffness act as critical contributing role in tumour carcinogenesis. This study examined ECM modifications to elucidate the mechanism underlying CXPA tumorigenesis. RESULTS: PA and CXPA organoids were successfully established. Histological observation, immunohistochemistry (IHC), and whole-exome sequencing demonstrated that organoids recapitulated phenotypic and molecular characteristics of their parental tumours. RNA-sequencing and bioinformatic analysis of organoids showed that differentially expressed genes are highly enriched in ECM-associated terms, implying that ECM alternations may be involved in carcinogenesis. Microscopical examination for surgical samples revealed that excessive hyalinized tissues were deposited in tumour during CXPA tumorigenesis. Transmission electron microscopy confirmed that these hyalinized tissues were tumour ECM in nature. Subsequently, examination by picrosirius red staining, liquid chromatography with tandem mass spectrometry, and cross-linking analysis indicated that tumour ECM was predominantly composed of type I collagen fibers, with dense collagen alignment and an increased level of collagen cross-linking. IHC revealed the overexpression of COL1A1 protein and collagen-synthesis-related genes, DCN and IGFBP5 (p < 0.05). Higher stiffness of CXPA than PA was demonstrated by atomic force microscopy and elastic imaging analysis. We utilized hydrogels to mimic ECM with varying stiffness degrees in vitro. Compared with softer matrices (5Kpa), CXPA cell line and PA primary cells exhibited more proliferative and invasive phenotypes in stiffer matrices (50Kpa, p < 0.01). Protein-protein interaction (PPI) analysis of RNA-sequencing data revealed that AR and ERBB-2 expression was associated with TWIST1. Moreover, surgical specimens demonstrated a higher TWIST1 expression in CXPA over PA. After knocking down TWIST1 in CXPA cells, cell proliferation, migration, and invasiveness were significantly inhibited (p < 0.01). CONCLUSION: Developing CXPA organoids provides a useful model for cancer biology research and drug screening. ECM remodelling, attributed to overproduction of collagen, alternation of collagen alignment, and increased cross-linking, leads to increased ECM stiffness. ECM modification is an important contributor in CXPA tumorigenesis.

20.
World J Hepatol ; 15(2): 180-200, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36926234

RESUMO

Chronic liver disease (CLD) is a continuous process that causes a reduction of liver function lasting more than six months. CLD includes alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), chronic viral infection, and autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, and cancer. Liver inflammation and oxidative stress are commonly associated with the development and progression of CLD. Molecular signaling pathways such as AMP-activated protein kinase (AMPK), C-Jun N-terminal kinase, and peroxisome proliferator-activated receptors (PPARs) are implicated in the pathogenesis of CLD. Therefore, antioxidant and anti-inflammatory agents from natural products are new potent therapies for ALD, NAFLD, and hepatocellular carcinoma (HCC). In this review, we summarize some powerful products that can be potential applied in all the stages of CLD, from ALD/NAFLD to HCC. The selected agents such as ß-sitosterol, curcumin, genistein, and silymarin can regulate the activation of several important molecules, including AMPK, Farnesoid X receptor, nuclear factor erythroid 2-related factor-2, PPARs, phosphatidylinositol-3-kinase, and lysyl oxidase-like proteins. In addition, clinical trials are undergoing to evaluate their efficacy and safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...