Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1372866, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525071

RESUMO

Soil enzymes play a central role in carbon and nutrient cycling, and their activities can be affected by drought-induced oxygen exposure. However, a systematic global estimate of enzyme sensitivity to drought in wetlands is still lacking. Through a meta-analysis of 55 studies comprising 761 paired observations, this study found that phosphorus-related enzyme activity increased by 38% as result of drought in wetlands, while the majority of other soil enzyme activities remained stable. The expansion of vascular plants under long-term drought significantly promoted the accumulation of phenolic compounds. Using a 2-week incubation experiment with phenol supplementation, we found that phosphorus-related enzyme could tolerate higher biotoxicity of phenolic compounds than other enzymes. Moreover, a long-term (35 years) drainage experiment in a northern peatland in China confirmed that the increased phenolic concentration in surface layer resulting from a shift in vegetation composition inhibited the increase in enzyme activities caused by rising oxygen availability, except for phosphorus-related enzyme. Overall, these results demonstrate the complex and resilient nature of wetland ecosystems, with soil enzymes showing a high degree of adaptation to drought conditions. These new insights could help evaluate the impact of drought on future wetland ecosystem services and provide a theoretical foundation for the remediation of degraded wetlands.

2.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3184-3194, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38511356

RESUMO

The mean transit time (MTT) is a good indicator of water cycle processes. We know little about the MTT of different water bodies within the soil-plant-atmosphere continuum (SPAC) in the subtropical monsoon region. We estimated the MTT of stratified soil water at different depths as well as the xylem water and leaf water in typical Cinnamomum camphora woodland located in Changsha City from March 2017 to October 2019. The main methods used in this study included the stable isotope technology, the linear mixed model and the sine wave fitting method. The results showed that the stable isotopes were more depleted in summer and enriched in winter for different water bodies within the SPAC. The δ2H values of soil water gradually decreased as depth increased. The δ2H values of xylem water closely resembled those of soil water, but the δ2H values of leaf water were more positive and exhibited larger variation. Results of the linear mixed model indicated that the lower MTT values of soil water and plant water occurred between June and September, while the higher values were often observed around January and from April to May. The precipitation replenishment exhibited a significant negative correlation with the MTT. The MTT of soil water generally increased with depth, although preferential flow could enhance the replenishment of deeper soil water and subsequently reduce the MTT. The mean MTT values of xylem water and leaf water were similar. Results of the sine wave fitting method showed that the young water fraction (Fyw) of soil water gradually decreased as depth increased, while the MTT of soil water gradually increased as depth increased. The Fyw and MTT of xylem water were lower and higher than those of leaf water, respectively. Both the mean MTT values of soil water based on the linear mixed model or the sine wave fitting method increased from the surface to the deeper soil layers. The former exhibited a smaller variation range and the latter showed a larger variation range. The mean MTT value of xylem water based on the linear mixed model was 2.4 days less than that of leaf water, while the MTT value of xylem water in the sine wave fitting method was 87.4 days higher than that of leaf water. These differences may be due to the parameterization of "new/young water", the uncertainty of results, and the effect of evaporative fractionation. This study contributes to a better understanding of water transport and consumption processes within the SPAC and provides valuable insights for agricultural production and water resources management in the subtropical monsoon region.


Assuntos
Plantas , Solo , Florestas , Atmosfera , Água , Folhas de Planta/química , Isótopos de Oxigênio/análise
3.
Sci Total Environ ; 657: 1064-1073, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30677874

RESUMO

Shrub encroachment has emerged as a global phenomenon over the past century. Multiple drivers have been put forward to explain the increased shrub dominance in various ecosystems around the world. However, the potential role of phenology in regulating shrub encroachment is not well understood. We address this issue using 3-year continuous monitoring of the phenology of coexisting shrubs and grasses combined with observations of ecohydrological processes (water uptake) and soil conditions (root zone soil moisture, soil texture, and soil temperature) at four study sites in Inner Mongolia, China, with shrub coverage of Caragana microphylla ranging from 0%, to 6.8%, 26.8% and 34.2%. Along such an encroachment gradient, shrubs exhibited progressively earlier onsets and later ends of the growing season, with an overall extension in growing season length by 15 days to 22 days in the later stages of shrub encroachment. Conversely, the coexisting grasses showed earlier occurrences both in spring and autumn phenological phases, which resulted in a phenological gap between shrubs and grasses. Thus, a positive feedback could exist between these phenological changes and shrub encroachment. In shrub patches, soils were wetter, with finer texture, and with more suitable temperatures for plant survival and development, which favored the lengthening of growing season of shrubs. The longer growing seasons are associated with longer periods of water use and photosynthesis for shrubs, and better opportunities for water uptake, with the overall effect of facilitating shrub growth and further expansion.


Assuntos
Caragana/fisiologia , Ecossistema , Poaceae , China , Monitoramento Ambiental , Retroalimentação Fisiológica , Hidrologia/métodos , Isótopos de Oxigênio/análise , Estações do Ano , Solo/química , Temperatura , Água/análise
4.
Natl Sci Rev ; 6(4): 786-795, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34691934

RESUMO

In recent decades, terrestrial vegetation in the northern hemisphere (NH) has been exposed to warming and more extremely high temperatures. However, the consequences of these changes for terrestrial vegetation growth remain poorly quantified and understood. By examining a satellite-based vegetation index, tree-ring measurements and land-surface model simulations, we discovered a consistent convex pattern in the responses of vegetation growth to temperature exposure (TE) for forest, shrub and grass in both the temperate (30°-50° N) and boreal (50°-70° N) NH during the period of 1982-2012. The response of vegetation growth to TE for the three vegetation types in both the temperate and boreal NH increased convergently with increasing temperature, until vegetation type-dependent temperature thresholds were reached. A TE beyond these temperature thresholds resulted in disproportionately weak positive or even strong negative responses. Vegetation growth in the boreal NH was more vulnerable to extremely high-temperature events than vegetation growth in the temporal NH. The non-linear responses discovered here provide new insights into the dynamics of northern terrestrial ecosystems in a warmer world.

5.
Glob Chang Biol ; 25(1): 144-154, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295402

RESUMO

Winter snow is an important driver of tree growth in regions where growing-season precipitation is limited. However, observational evidence of this influence at larger spatial scales and across diverse bioclimatic regions is lacking. Here, we investigated the interannual effects of winter (here defined as previous October to current February) snow depth on tree growth across temperate China over the period of 1961-2015, using a regional network of tree ring records, in situ daily snow depth observations, and gridded climate data. We report uneven effects of winter snow depth on subsequent growing-season tree growth across temperate China. There shows little effect on tree growth in drier regions that we attribute mainly to limited snow accumulation during winter. By contrast, winter snow exerts important positive influence on tree growth in stands with high winter snow accumulation (e.g., in parts of cold arid regions). The magnitude of this effect depends on the proportion of winter snow to pre-growing-season (previous October to current April) precipitation. We further observed that tree growth in drier regions tends to be increasingly limited by warmer growing-season temperature and early growing-season water availability. No compensatory effect of winter snow on the intensifying drought limitation of tree growth was observed across temperate China. Our findings point toward an increase in drought vulnerability of temperate forests in a warming climate.


Assuntos
Mudança Climática , Clima , Árvores/crescimento & desenvolvimento , China , Ecossistema , Estações do Ano , Neve
6.
Sci Total Environ ; 650(Pt 2): 3007-3016, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30373077

RESUMO

The tight linkage between photosynthesis (An) and soil respiration (Rs) has been verified in many terrestrial ecosystems. However, it remains unclear whether this linkage occurs in desert ecosystems, where water is considered an important trigger of carbon cycling. A field experiment was performed under seven simulated rainfall amounts (0, 3, 5, 10, 15, 25, and 40 mm) with two co-existing desert plants (Reaumuria soongorica and Nitraria sphaerocarpa) in June (early growing season, EGS) and August (middle growing season, MGS) in 2016. An, Rs, predawn water potential (Ψpd), soil temperature (Ts) and soil moisture (Swc) were measured for each treatment or control plot for 3 weeks. Our objective was to examine the effects of rainfall pattern on Rs and physiological responses of the two plants and the relationships between Rs and biotic and abiotic factors. No obvious variations in Ψpd or An were found under small rainfall events. However, when the rainfall amount exceeded 10 mm, both plants responded strongly, and the response patterns of Rs showed trends similar to those of An, which varied between species and seasons. Moreover, rain additions of 3-40 mm significantly increased Rs, and the relative changes in Rs (ΔRs) of both species were much larger in the EGS than in the MGS. Importantly, abiotic factors may have controlled the variations in Rs under small rain events while An played a more important role in regulating the variations in Rs when the rainfall amount exceeded 10 mm for both species, suggest that the rainfall pattern-driven changes in Rs composition interact with physiological activity and abiotic factors to regulate the response of Rs to rainfall variability in desert ecosystems. Thus, climate change in the coming decades may lead to carbon sequestration by desert plants, which may cause desert ecosystems to act as carbon sinks.


Assuntos
Clima Desértico , Magnoliopsida/fisiologia , Fotossíntese , Chuva , Solo , China , Ecossistema , Tamaricaceae/fisiologia
7.
PLoS One ; 13(4): e0194242, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29677195

RESUMO

Understanding species-specific changes in water-use patterns under recent climate scenarios is necessary to predict accurately the responses of seasonally dry ecosystems to future climate. In this study, we conducted a precipitation manipulation experiment to investigate the changes in water-use patterns of two coexisting species (Achnatherum splendens and Allium tanguticum) to alterations in soil water content (SWC) resulting from increased and decreased rainfall treatments. The results showed that the leaf water potential (Ψ) of A. splendens and A. tanguticum responded to changes in shallow and middle SWC at both the control and treatment plots. However, A. splendens proportionally extracted water from the shallow soil layer (0-10cm) when it was available but shifted to absorbing deep soil water (30-60 cm) during drought. By contrast, the A. tanguticum did not differ significantly in uptake depth between treatment and control plots but entirely depended on water from shallow soil layers. The flexible water-use patterns of A.splendens may be a key factor facilitating its dominance and it better acclimates the recent climate change in the alpine grassland community around Qinghai Lake.


Assuntos
Allium/metabolismo , Pradaria , Poaceae/metabolismo , Água/metabolismo , Allium/crescimento & desenvolvimento , China , Deutério/análise , Secas , Isótopos de Oxigênio/análise , Folhas de Planta/química , Poaceae/crescimento & desenvolvimento , Chuva , Estações do Ano , Solo/química , Água/química
8.
Glob Chang Biol ; 24(1): 504-516, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28973825

RESUMO

In view of future changes in climate, it is important to better understand how different plant functional groups (PFGs) respond to warmer and drier conditions, particularly in temperate regions where an increase in both the frequency and severity of drought is expected. The patterns and mechanisms of immediate and delayed impacts of extreme drought on vegetation growth remain poorly quantified. Using satellite measurements of vegetation greenness, in-situ tree-ring records, eddy-covariance CO2 and water flux measurements, and meta-analyses of source water of plant use among PFGs, we show that drought legacy effects on vegetation growth differ markedly between forests, shrubs and grass across diverse bioclimatic conditions over the temperate Northern Hemisphere. Deep-rooted forests exhibit a drought legacy response with reduced growth during up to 4 years after an extreme drought, whereas shrubs and grass have drought legacy effects of approximately 2 years and 1 year, respectively. Statistical analyses partly attribute the differences in drought legacy effects among PFGs to plant eco-hydrological properties (related to traits), including plant water use and hydraulic responses. These results can be used to improve the representation of drought response of different PFGs in land surface models, and assess their biogeochemical and biophysical feedbacks in response to a warmer and drier climate.


Assuntos
Mudança Climática , Secas , Florestas , Hidrologia , Árvores/crescimento & desenvolvimento , Água/fisiologia
9.
Sci Total Environ ; 542(Pt A): 182-91, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26519579

RESUMO

Plant water use patterns reflect the complex interactions between different functional types and environmental conditions in water-limited ecosystems. However, the mechanisms underlying the water use patterns of plants in the alpine desert of the Qinghai-Tibet Plateau remain poorly understood. This study investigated seasonal variations in the water sources of herbs (Carex moorcroftii, Astragalus adsurgens) and shrubs (Artemisia oxycephala, Hippophae rhamnoides) using stable oxygen-18 isotope methods. The results indicated that the native herbs (C. moorcroftii, A. adsurgens) and one of the shrubs (A. oxycephala) mainly relied on water from the shallow layer (0-30 cm) throughout the growing season, while the introduced shrub (H. rhamnoides) showed plasticity in switching between water from shallow and deep soil layers depending on soil water availability. All studied plants primarily depended on water from shallow soil layers early in the season. The differences of water use patterns between the introduced and native plants are closely linked with the range of active root zones when competing for water. Our findings will facilitate the mechanistic understanding of plant-soil-water relations in alpine desert ecosystems and provide information for screening introduced species for sand fixation.


Assuntos
Ecossistema , Espécies Introduzidas , Fenômenos Fisiológicos Vegetais , Plantas/classificação , Ciclo Hidrológico , China , Clima Desértico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...