Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728423

RESUMO

Cysteine desulfhydrase (LCD) catalyzes the generation of the signaling molecule hydrogen sulfide (H2S) in plants. In this study, we found that H2S can inhibit tomato (Solanum lycopersicum) fruit ripening and SlWRKY6 undergoes differential protein persulfidation in SlLCD1-overexpressing leaves. Then, further study indicated that SlWRKY6 could be persulfidated by H2S at Cys396. By construction of slwrky6 mutants and SlWRKY6-OE lines, we found that SlWRKY6 positively regulates leaf senescence and fruit ripening by activating the transcription of ripening-related genes STAYGREEN 1 (SlSGR1) and Senescence-Associated Gene 12 (SlSAG12). In addition, SlWRKY6 interacted with kinase SlMAPK4 and was phosphorylated at Ser33. Dual luciferase transient expression assays and electrophoretic mobility shift assays indicated that SlWRKY6 persulfidation attenuated its transcriptional regulation of target genes SlSGR1 and SlSAG12, whereas SlWRKY6 phosphorylation by SlMAPK4 activated the transcription of target genes to promote fruit ripening. Moreover, we provided evidence that SlWRKY6 persulfidation attenuated its SlMAPK4-mediated phosphorylation to inhibit tomato fruit ripening. By transient expression of SlWRKY6, SlWRKY6C396A, SlWRKY6S33A and SlWRKY6S33D in slwrky6 fruits, we found that SlWRKY6 persulfidation attenuated the expression of SlSGR1 and SlSAG12 thereby delaying tomato fruit ripening, while SlWRKY6 phosphorylation increased the expression of target genes. As tomato fruits ripened, endogenous H2S production decreased, while SlMAPK4 expression increased. Therefore, our findings reveal a model in which SlWRKY6 persulfidation due to higher endogenous H2S levels in un-ripened fruit inhibits its ability to activate SlSGR1 and SlSAG12 expression, while SlWRKY6 phosphorylation by SlMAPK4 activates its transcriptional activity, thereby promoting tomato fruit ripening.

4.
Nat Commun ; 14(1): 756, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765059

RESUMO

Significant efforts have been invested to restore mangrove forests worldwide through reforestation and afforestation. However, blue carbon benefit has not been compared between these two silvicultural pathways at the global scale. Here, we integrated results from direct field measurements of over 370 restoration sites around the world to show that mangrove reforestation (reestablishing mangroves where they previously colonized) had a greater carbon storage potential per hectare than afforestation (establishing mangroves where not previously mangrove). Greater carbon accumulation was mainly attributed to favorable intertidal positioning, higher nitrogen availability, and lower salinity at most reforestation sites. Reforestation of all physically feasible areas in the deforested mangrove regions of the world could promote the uptake of 671.5-688.8 Tg CO2-eq globally over a 40-year period, 60% more than afforesting the same global area on tidal flats (more marginal sites). Along with avoiding conflicts of habitat conversion, mangrove reforestation should be given priority when designing nature-based solutions for mitigating global climate change.


Assuntos
Mudança Climática , Áreas Alagadas , Carbono , Ecossistema , Florestas
5.
Plant Physiol ; 192(1): 616-632, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732924

RESUMO

Hydrogen sulfide (H2S) is a gaseous signaling molecule reported to play multiple roles in fruit ripening. However, the molecular mechanisms underlying H2S-mediated delay in fruit ripening remain to be established. Here, the gene encoding a WRKY transcription factor, WRKY71, was identified as substantially upregulated in H2S-treated tomato (Solanum lycopersicum) via transcriptome profiling. The expression of WRKY71 was negatively associated with that of CYANOALANINE SYNTHASE1 (CAS1). Transient and stable genetic modification experiments disclosed that WRKY71 acts as a repressor of the tomato ripening process. CAS1 appears to play an opposite role, based on the finding that the ripening process was delayed in the cas1 mutant and accelerated in CAS1-OE tomatoes. Dual-luciferase reporter assay, yeast one-hybrid, electrophoretic mobility shift assay, and transient transformation experiments showed that WRKY71 bound to the CAS1 promoter and suppressed its activation. Moreover, the persulfidation of WRKY71 enhanced its binding ability to the CAS1 promoter. Data from luciferase complementation and Y2H assays confirmed that WRKY71 interacts with a BOI-related E3 ubiquitin-protein ligase 3 (BRG3) and is ubiquitinated in vitro. Further experiments showed that modification of BRG3 via persulfidation at Cys206 and Cys212 led to reduced ubiquitination activity. Our findings support a model whereby BRG3 undergoes persulfidation at Cys206 and Cys212, leading to reduced ubiquitination activity and decreased interactions with the WRKY71 transcript, with a subsequent increase in binding activity of the persulfidated WRKY71 to the CAS1 promoter, resulting in its transcriptional inhibition and thereby delayed ripening of tomatoes. Our collective findings provide insights into a mechanism of H2S-mediated regulation of tomato fruit ripening.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Frutas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Etilenos/metabolismo
6.
Front Plant Sci ; 13: 977349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275576

RESUMO

Rice productivity has considerably improved due to the effective employment of heterosis, but the genetic basis of heterosis for grain shape and weight remains uncertain. For studying the genetic dissection of heterosis for grain shape/weight and their relationship with grain yield in rice, quantitative trait locus (QTL) mapping was performed on 1,061 recombinant inbred lines (RILs), which was developed by crossing xian/indica rice Quan9311B (Q9311B) and Wu-shan-si-miao (WSSM). Whereas, BC1F1 (a backcross F1) was developed by crossing RILs with Quan9311A (Q9311A) combined with phenotyping in Hefei (HF) and Nanning (NN) environments. Overall, 114 (main-effect, mQTL) and 359 (epistatic QTL, eQTL) were identified in all populations (RIL, BC1F1, and mid-parent heterosis, HMPs) for 1000-grain weight (TGW), grain yield per plant (GYP) and grain shape traits including grain length (GL), grain width (GW), and grain length to width ratio (GLWR). Differential QTL detection revealed that all additive loci in RILs population do not show heterotic effects, and few of them affect the performance of BC1F1. However, 25 mQTL not only contributed to BC1F1's performance but also contributed to heterosis. A total of seven QTL regions was identified, which simultaneously affected multiple grain traits (grain yield, weight, shape) in the same environment, including five regions with opposite directions and two regions with same directions of favorable allele effects, indicating that partial genetic overlaps are existed between different grain traits. This study suggested different approaches for obtaining good grain quality with high yield by pyramiding or introgressing favorable alleles (FA) with the same direction of gene effect at the QTL regions affecting grain shape/weight and grain yield distributing on different chromosomes, or introgressing or pyramiding FA in the parents instead of fixing additive effects in hybrid as well as pyramiding the polymorphic overdominant/dominant loci between the parents and eliminating underdominant loci from the parents. These outcomes offer valuable information and strategy to develop hybrid rice with suitable grain type and weight.

7.
Rice (N Y) ; 15(1): 49, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181551

RESUMO

BACKGROUND: Since its development and wide adoption in China, hybrid rice has reached the yield plateau for more than three decades. To understand the genetic basis of heterosis in rice and accelerate hybrid rice breeding, the yield performances of the elite rice hybrid, Quan-you-si-miao (QYSM) were genetically dissected by whole-genome sequencing, large-scale phenotyping of 1061 recombined inbred lines (RILs) and 1061 backcross F1 (BCF1) hybrids derived from QYSM's parents across three environments and gene-based analyses. RESULTS: Genome-wide scanning of 13,847 segregating genes between the parents and linkage mapping based on 855 bins across the rice genome and phenotyping experiments across three environments resulted in identification of large numbers of genes, 639 main-effect QTLs (M-QTLs) and 2736 epistatic QTLs with significant additive or heterotic effects on the trait performances of the combined population consisting of RILs and BCF1 hybrids, most of which were environment-specific. The 324 M-QTLs affecting yield components included 32.7% additive QTLs, 38.0% over-dominant or dominant ones with strong and positive effects and 29.3% under-dominant or incomplete recessive ones with significant negative heterotic effects. 63.6% of 1403 genes with allelic introgression from subspecies japonica/Geng in the parents of QYSM may have contributed significantly to the enhanced yield performance of QYSM. CONCLUSIONS: The parents of QYSM and related rice hybrids in China carry disproportionally more additive and under-dominant genes/QTLs affecting yield traits. Further focus in indica/Xian rice breeding should shift back to improving inbred varieties, while breaking yield ceiling of Xian hybrids can be achieved by one or combinations of the three strategies: (1) by pyramiding favorable alleles of additive genes, (2) by eliminating or minimizing under-dominant loci, and (3) by pyramiding overdominant/dominant genes polymorphic, particularly those underlying inter-subspecific heterosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...