Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosystems ; 236: 105128, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38280446

RESUMO

When studying stochastic gene transcription, it is important to understand how system parameters are temporally modulated in response to varying environments. Experimentally, the dynamic distribution data of RNA copy numbers measured at multiple time points are often fitted to stochastic transcription models to estimate time-dependent parameters. However, current methods require determining which parameters are time-dependent, as well as their analytical formulas, before the optimal fit. In this study, we developed a method to estimate time-dependent parameters in a classical two-state model without prior assumptions regarding the system parameters. At each measured time point, the method fitted the dynamic distribution data using a steady-state distribution formula, in which the estimated constant parameters were approximated as time-dependent parameter values at the measured time point. The accuracy of this method can be guaranteed for RNA molecules with relatively high degradation rates and genes with relatively slow responses to induction. We quantify the accuracy of the method and implemented this method on two sets of dynamic distribution data from prokaryotic and eukaryotic cells, and revealed the temporal modulation of transcription burst size in response to environmental changes.


Assuntos
RNA , Transcrição Gênica , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA