Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 171254, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408659

RESUMO

Torrefaction is an effective pathway for microalgal solid biofuel upgrading, and alkali metal activation is also an efficient method to enhance fuel properties. This study explores the comparison of torrefaction alone and KOH activation combined with torrefaction to determine a better operation for biochar production from the microalga Nannochloropsis Oceanica. The results indicate that the HHV ranges of KOH-activated biochar and unactivated biochar are 25.611-32.792 MJ·kg-1 and 25.024-26.389 MJ·kg-1, respectively. Furthermore, KOH-activated biochar is better than unactivated biochar, with less residue, broader pyrolysis and combustion temperature ranges, higher elemental carbon, and less combined carbon. Moreover, KOH-activated biochar is close to the unactivated one from the viewpoint of expense calculation and life cycle assessment and thus possesses a better comprehensive performance. Overall, KOH activation is an efficient method for upgrading microalgal solid biofuel. The results are conducive to exploring further modification of microalgal solid biofuel production with better properties, thus leading to a greener and more efficient approach for upgrading fuel performance.


Assuntos
Microalgas , Água/química , Biocombustíveis , Biomassa , Carvão Vegetal , Temperatura
2.
Sci Total Environ ; 917: 170198, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278277

RESUMO

Phosphorus modified biochar (P-BC) is an effective adsorbent for wastewater remediation, which has attracted widespread attention due to its low cost, vast source, unique surface structure, and abundant functional groups. However, there is currently no comprehensive analysis and review of P-BC in wastewater remediation. In this study, a detailed introduction is given to the synthesis method of P-BC, as well as the effects of pyrolysis temperature and residence time on physical and chemical properties and adsorption performance of the material. Meanwhile, a comprehensive investigation and evaluation were conducted on the different biomass types and phosphorus sources used to synthesize P-BC. This article also systematically compared the adsorption efficiency differences between P-BC and raw biochar, and summarized the adsorption mechanism of P-BC in removing pollutants from wastewater. In addition, the effects of P-BC composite with other materials (element co-doping, polysaccharide stabilizers, microbial loading, etc.) on physical and chemical properties and pollutant adsorption capacity of the materials were investigated. Some emerging applications of P-BC were also introduced, including supercapacitors, CO2 adsorbents, carbon sequestration, soil heavy metal remediation, and soil fertility improvement. Finally, some valuable suggestions and prospects were proposed for the future research direction of P-BC to achieve the goal of multiple utilization.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Carvão Vegetal/química , Solo/química , Poluentes Ambientais/análise , Adsorção , Fósforo , Poluentes Químicos da Água/análise
3.
Cancer Biol Ther ; 25(1): 2302162, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241178

RESUMO

Keratin 80 (KRT80) is a filament protein that makes up one of the major structural fibers of epithelial cells, and involved in cell differentiation and epithelial barrier integrity. Here, KRT80 mRNA expression was found to be higher in esophageal cancer than normal epithelium by RT-PCR and bioinformatics analysis (p < .05), opposite to KRT80 methylation (p < .05). There was a negative relationship between promoter methylation and expression level of KRT80 gene in esophageal cancer (p < .05). KRT80 mRNA expression was positively correlated with the differentiation, infiltration of immune cells, and poor prognosis of esophageal cancer (p < .05). KRT80 mRNA expression was positively linked to no infiltration of immune cells, the short survival time of esophageal cancers (p < .05). The differential genes of KRT80 mRNA were involved in fat digestion and metabolism, peptidase inhibitor, and intermediate filament, desosome, keratinocyte differentiation, epidermis development, keratinization, ECM regulator, complement cascade, metabolism of vitamins and co-factor (p < .05). KRT-80-related genes were classified into endocytosis, cell adhesion molecule binding, cadherin binding, cell-cell junction, cell leading edge, epidermal cell differentiation and development, T cell differentiation and receptor complex, plasma membrane receptor complex, external side of plasma membrane, metabolism of amino acids and catabolism of small molecules, and so forth (p < .05). KRT80 knockdown suppressed anti-apoptosis, anti-pyroptosis, migration, invasion, chemoresistance, and lipogenesis in esophageal cancer cells (p < .05), while ACC1 and ACLY overexpression reversed the inhibitory effects of KRT80 on lipogenesis and chemoresistance. These findings indicated that up-regulated expression of KRT80 might be involved in esophageal carcinogenesis and subsequent progression, aggravate aggressive phenotypes, and induced chemoresistance by lipid droplet assembly and ACC1- and ACLY-mediated lipogenesis.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas , Queratinas Tipo II , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Lipogênese/genética , RNA Mensageiro , Queratinas Tipo II/genética , Queratinas Tipo II/metabolismo
4.
Plant Physiol Biochem ; 206: 108274, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100891

RESUMO

Drought induces alteration in membrane lipid composition in plants; however, still little is known about whether membrane lipid remodeling plays a role in plant drought acclimation, including both drought tolerance and recovery, especially in crops. Here, we imposed natural progressive drought and re-watering in 18 maize genotypes at the seedling stage, and analyzed the physiological responses, drought tolerance and drought acclimation capabilities, contents of lipids, and fatty acid compositions. The results showed that drought caused significant reductions in shoot dry weight, relative water content, Fv/Fm, total lipid content, and double bond index (DBI) in most genotypes, while re-watering partially recovered these reductions. Meanwhile, the total lipid content, fatty acid composition, and DBI were also changed obviously in response to drought and re-watering. In order to explore the relationship between membrane lipid change and plant drought response, we did a principal component analysis. The results showed that C18:3 fatty acid contributed greatly to drought tolerance, and C16:2 and C16:3 fatty acids were more responsible for drought recovery. Meanwhile, DBI showed significant positive correlations with shoot dry weight and relative water content, but a negative association with lipid peroxidation, and more importantly, DBI was important for both drought tolerance and recovery. These alterations in membrane lipid composition may facilitate increasing membrane fluidity and decreasing membrane damage, thus maintaining the high photosynthetic capability under drought. Our results suggest that lipid remodeling is important for drought tolerance and recovery in crops, and different fatty acid species have different roles in crop drought acclimation.


Assuntos
Ácidos Graxos , Zea mays , Zea mays/genética , Secas , Aclimatação/fisiologia , Água , Lipídeos de Membrana
5.
Lasers Med Sci ; 39(1): 18, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38155274

RESUMO

Vascular diseases, such as venous insufficiency and coronary artery diseases, have been threatening the health of people. Efficient treatment with proper postoperative care is required to relieve the pain of the patients. Traditionally, venous insufficiency is treated with ligation and stripping, an open surgery whose complication rate cannot be ignored. Coronary artery disease is often treated with balloon angioplasty during which undilatable lesions may be encountered, limiting the efficacy of this approach. With advances in laser photonics and percutaneous coronary intervention procedure, laser ablation is emerging as an alternative and adjunctive therapy for these diseases. Endovenous laser ablation has the advantages of high success rate, low complication risk, and fast postoperative recovery. Laser ablation in arteries can handle uncrossable or undilatable lesions with a low incidence of serious complications. In this review, previously published research concerning vascular diseases and their therapies are analyzed in order to provide a clear explanation of the mechanisms and merits of laser ablation. For endovenous laser ablation, the main mechanisms are steam bubbles, heat conduction, and heat pipe, and three main influencing factors are wavelength, fiber types, and laser energy density. For excimer laser coronary atherectomy, the main mechanisms are photochemical, photothermal, and photomechanical effects, and three main influencing factors are catheter, medium, and laser parameters.


Assuntos
Angioplastia Coronária com Balão , Angioplastia com Balão , Ablação por Cateter , Doença da Artéria Coronariana , Terapia a Laser , Varizes , Insuficiência Venosa , Humanos , Terapia a Laser/métodos , Lasers , Insuficiência Venosa/cirurgia , Doença da Artéria Coronariana/cirurgia , Resultado do Tratamento , Varizes/cirurgia , Veia Safena/cirurgia
6.
IEEE Trans Image Process ; 32: 5865-5876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37889808

RESUMO

With the rapid development of generative adversarial networks, face photo-sketch synthesis has achieved promising performance and playing an increasingly important role in law enforcement as well as entertainment. However, most of the existing methods only work under the condition of no interference, and lack of generalization ability in wild scenes. The fidelity of the images generated by the existing methods are insufficient, and the manipulation ability according to text description is unavailable. Directly applying existing text-based image manipulation methods on face photo-sketch scenario may lead to severe distortions due to the cross-domain challenges. Therefore, we propose a novel cross-domain face photo-sketch synthesis framework named HiFiSketch, a network that learns to adjust the weights of generators for high-fidelity synthesis and manipulation. It can realize the translation of images between the photo domain and the sketch domain, and modify results according to the text input in the meanwhile. We further propose a cross-domain loss function, which can effectively preserve facial details during face photo-sketch synthesis. Extensive experiments on four public face sketch datasets show the superiority of our method compared to existing methods. We further present text-based face photo-sketch manipulation and sequential face photo-sketch manipulation for the first time to demonstrate the effectiveness of our method on high fidelity face photo-sketch synthesis and manipulation.

7.
World J Gastroenterol ; 29(35): 5104-5124, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37744296

RESUMO

BACKGROUND: Regenerating gene 4 (REG4) has been proved to be carcinogenic in some cancers, but its manifestation and possible carcinogenic mechanisms in colorectal cancer (CRC) have not yet been elucidated. Our previous study found that the drug resistance of CRC cells may be closely linked to their fat metabolism. AIM: To explore the role of REG4 in CRC and its association with lipid droplet formation and chemoresistance. METHODS: We conducted a meta-analysis and bioinformatics and pathological analyses of REG4 expression in CRC. The effects of REG4 on the phenotypes and related protein expression were also investigated in CRC cells. We detected the impacts of REG4 on the chemoresistance and lipid droplet formation in CRC cells. Finally, we analyzed how REG4 regulated the transcription and proteasomal degradation of lipogenic enzymes in CRC cells. RESULTS: Compared to normal mucosa, REG4 mRNA expression was high in CRC (P < 0.05) but protein expression was low. An inverse correlation existed between lymph node and distant metastases, tumor-node-metastasis staging or short overall survival and REG4 mRNA overexpression (P < 0.05), but vice versa for REG4 protein expression. REG4-related genes included: Chemokine activity; taste receptors; protein-DNA and DNA packing complexes; nucleosomes and chromatin; generation of second messenger molecules; programmed cell death signals; epigenetic regulation and DNA methylation; transcription repression and activation by DNA binding; insulin signaling pathway; sugar metabolism and transfer; and neurotransmitter receptors (P < 0.05). REG4 exposure or overexpression promoted proliferation, antiapoptosis, migration, and invasion of DLD-1 cells in an autocrine or paracrine manner by activating the epidermal growth factor receptor-phosphoinositide 3-kinase-Akt-nuclear factor-κB pathway. REG4 was involved in chemoresistance not through de novo lipogenesis, but lipid droplet assembly. REG4 inhibited the transcription of acetyl-CoA carboxylase 1 (ACC1) and ATP-citrate lyase (ACLY) by disassociating the complex formation of anti-acetyl (AC)-acetyl-histone 3-AC-histone 4-inhibitor of growth protein-5-si histone deacetylase;-sterol-regulatory element binding protein 1 in their promoters and induced proteasomal degradation of ACC1 or ACLY. CONCLUSION: REG4 may be involved in chemoresistance through lipid droplet assembly. REG4 reduces expression of de novo lipid synthesis key enzymes by inhibiting transcription and promoting ubiquitination-mediated proteasomal degradation.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Gotículas Lipídicas , Proteínas Associadas a Pancreatite , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , DNA , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética , Histonas , Fosfatidilinositol 3-Quinases , Proteínas Associadas a Pancreatite/genética
8.
Nanotechnology ; 34(49)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37666227

RESUMO

Nanomaterials are widely used in the fields of sensors, optoelectronics, biophotonics and ultrafast photonics due to their excellent mechanical, thermal, optical, electrical and magnetic properties. Particularly, owing to their nonlinear optical properties, fast response time and broadband operation, nanomaterials are ideal saturable absorption materials in ultrafast photonics, which contribute to the improvement of laser performance. Therefore, nanomaterials are of great importance to applications in wavelength-tunable broadband pulsed lasers. Herein, we review the integration and applications of nanomaterials in wavelength-tunable broadband ultrafast photonics. Firstly, the two integration methods, which are direct coupling and evanescent field coupling, and their characteristics are introduced. Secondly, the applications of nanomaterials in wavelength-tunable broadband lasers are summarized. Finally, the development of nanomaterials and broadband tunable lasers is reviewed and discussed.

9.
Environ Res ; 237(Pt 2): 116959, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619628

RESUMO

Biochar is widely used to remove organic pollutants from the environment. Several studies have focused on pollutant removal via biochar adsorption. However, research on the subsequent processing of pollutant-adsorbed biochar is lacking. This study explored the potential of biochar for the adsorption of an aquatic organic pollutant (tetracycline) and its subsequent use as a solid biofuel. These results suggest that corn straw-derived biochar (torrefaction and pyrolysis) is suitable for two-stage utilization to achieve bioresource valorization for environmental sustainability. Tetracycline-adsorbed biochar, particularly biochar pyrolyzed at 600 °C, is suitable for use as a biofuel. The biochar produced via torrefaction (300 °C) and pyrolysis (600 °C) is the optimal choice, with surface area, contact angle, graphitization degree, calorific value, enhancement factor, and upgrading energy index values of 172.48 m2/g, 120.4°, 3.87, 26.983 MJ/kg, 1.58, and 33.72, respectively. This is supported by the results of expense calculation, comprehensive performance analysis, and life-cycle assessment. Overall, the biochar produced in this study is suitable for organic pollutant removal and as solid biofuel; thus, it can be used to realize waste utilization for environmental sustainability.

10.
Bioresour Technol ; 387: 129657, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37595806

RESUMO

Biochar is of great importance to realizing solid biowastes reduction and environmental remediation. Modifying biochar for better performance is also of great concern to achieve property improvement. P-doped biochar from soybean straw is prepared for multistage utilization to realize water pollutant removal and biofuel usage. The results suggest that the prepared biochar is adequate for sulfadiazine adsorption and has stable performance under coexisting ions and aquatic pH. Furthermore, the higher heating value of the biochar is close to coal and thus can be an alternative to fossil fuel. The maximum sulfadiazine adsorption amount of P-doped biochar is 252.24 mg·g-1, and the P-doped biochar HHV is 24 MJ·kg-1 which can be an alternative to coal. The greenhouse gas and pollutant emission potential are also considered to explore the environmental impact of P-doped biochar production and usage. Overall, the optimal ratio of soybean straw: K3PO4 is 3:1.


Assuntos
Poluentes Ambientais , Glycine max , Biocombustíveis , Carvão Mineral , Sulfadiazina
11.
J Hazard Mater ; 459: 132024, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572603

RESUMO

Mulch film residue contributes significantly to global plastic pollution, and consequently biodegradable mulch films (BDMs) are being adopted as a solution. BDMs decompose relatively quickly, but their complete biodegradation requires suitable conditions that are difficult to achieve in nature, causing biodegradable microplastics (bio-MPs) to be more likely to accumulate in soil than traditional microplastics (MPs). If BDMs are to be considered as a sustainable solution, long-term and in-depth studies to investigate the impact of bio-MPs on the biogeochemical processes are vital to agroecosystems operation and ecosystem services supply. Although bio-MP-derived carbon can potentially convert into biomass during decomposition, its contribution to soil carbon stocks is insignificant. Instead, given their biodegradability, bio-MPs can result in greater alterations of soil biodiversity and community composition. Their high carbon-nitrogen ratios may also significantly regulate various processes involved in the natural decomposition and transformation of soil organic matter, including the reduction of nutrient availability and increase in greenhouse gas emissions. Soil ecosystems are complex organic entities interconnected by disturbance-feedback mechanisms. Given the prevailing knowledge gaps regarding the impact of bio-MPs on soil biogeochemical cycles and ecosystem balance, this study emphasized the safety and sustainability assessment of bio-MPs and the prevailing comprehensive challenges.


Assuntos
Microplásticos , Plásticos , Ecossistema , Solo/química , Carbono
12.
J Cancer Res Clin Oncol ; 149(16): 14641-14655, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37584712

RESUMO

PURPOSE: As a member of the G-protein-coupled receptor 1 family, the G-protein-coupled receptor 176 (GPR176) gene encodes a glycosylated protein made up of 515 amino acids. The current study was performed to evaluate the impact of GPR176 on the clinicopathology and prognosis of oesophageal cancer, as well as uncover its molecular mechanisms. METHODS: Bioinformatics and clinical tissue samples were used to detect the expression and clinicopathological significance of GPR176 in oesophageal cancer. The expression, proliferation, migration and invasion, apoptosis and lipid droplet formation of GPR176 gene in oesophageal cancer were performed as phenotypic readouts. RESULTS: Here, RT-PCR and bioinformatic analyses revealed that GPR176 mRNA expression was significantly higher in oesophageal cancer than in normal mucosa (p < 0.05). GPR176 mRNA expression was associated with low weight and BMI, low T stage, low N and clinicopathological stage, low histological grade and favourable clinical outcome of oesophageal cancer (p < 0.05). The differential genes of GPR176 mRNA were involved in protein digestion and absorption, extracellular matrix constituent, endoplasmic reticulum lumen, among others (p < 0.05). GPR176-related genes were classified as being involved in oxidoreductase activity, actin and myosin complexes, lipid localisation and transport, among others (p < 0.05). GPR176 knockdown suppressed proliferation, anti-apoptotic and anti-pyroptotic properties, migration, invasion, chemoresistance and lipid droplet formation in oesophageal cancer cells (p < 0.05), while ACC1 and ACLY overexpression reversed the inhibitory effects of GPR176 silencing on lipid droplet formation and chemoresistance. CONCLUSION: These findings indicated that upregulated expression of GPR176 might be involved in oesophageal carcinogenesis and subsequent progression, aggressiveness, and induced chemoresistance by ACC1- and ACLY-mediated lipogenesis and lipid droplet assembly.


Assuntos
Neoplasias Esofágicas , Lipogênese , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Proliferação de Células , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , RNA Mensageiro/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
13.
Bioresour Technol ; 386: 129531, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37473787

RESUMO

This study performs the comparative advantage analysis of oxidative torrefaction of corn stalks to investigate the advantages of oxidative torrefaction for biochar fuel property upgrading. The obtained results indicate that oxidative torrefaction is more efficient in realizing mass loss and energy density improvement, as well as elemental carbon accumulation and surface functional groups removal, and thus leads to a better fuel property. The maximum values of relative mass loss, higher heating value, enhancement factor, and energy yield are 3.00, 1.10, 1.03, and 0.87, respectively. The relative elemental carbon, hydrogen, and oxygen content ranges are 1.30-3.10, 1.50-3.30, and 2.00-6.80, respectively. In addition, an excellent linear distribution is obtained between the comprehensive pyrolysis index and torrefaction severity index, with elemental carbon and oxygen component variation stemming from pyrolysis performance correlating to the elemental component and valance.


Assuntos
Biocombustíveis , Carbono , Biomassa , Temperatura , Oxigênio , Estresse Oxidativo
14.
J Obstet Gynaecol ; 43(2): 2228899, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37377218

RESUMO

BAG3 is a co-chaperone BAG family protein that plays important roles in protein homeostasis, cell survival, cell motility, and tumour metastasis. This study aimed to clarify the clinicopathological and prognostic implications of BAG3 mRNA expression in tumours. We performed bioinformatics analysis on BAG3 mRNA expression using TCGA, XIANTAO, UALCAN, and Kaplan-Meier plotter databases. BAG3 mRNA expression was downregulated in breast and endometrial cancers and positively correlated with favourable PAM50 subtyping in breast cancer,clinical stage and short overall survival in ovarian cancer and negatively correlated with T stage, clinical stage, and histological grade in cervical and endometrial cancers. The top BAG3-related pathways included ligand-receptor interactions and activity, DNA packaging and nucleosomes, hormonal responses, membrane regions, microdomains and rafts, and endosomes in breast cancer; ligand-receptor interactions, transmembrane transporters and channels, cell adhesion, and keratinisation in cervical cancer; ligand-receptor interactions, anion transmembrane transporters, lipoproteins, keratinisation, cell adhesion, and protein processing in endometrial cancer; metabolism of porphyrin, chlorophyll, pentose, uronic acid, ascorbate, and alternate and cell adhesion in ovarian cancer. BAG3 expression could represent a potential marker for carcinogenesis, histogenesis, aggressive behaviours, and prognosis in gynecological cancers.IMPACT STATEMENTWhat is already known on this subject? BAG3 regulates cell activity, autophagy, and resistance to apoptosis through multiple domains and plays an important role in tumour development. BAG3 positively regulates tumour cell invasion and migration in cervical and ovarian cancers.What do the results of this study add? BAG3 expression is closely associated with histogenesis, clinicopathology, and prognosis in gynecological cancers and is involved in signalling pathways associated with the control of cell proliferation, migration, invasion, and drug resistance in tumours.What are the implications of these findings for clinical practice and/or further research? Abnormal BAG3 expression can be employed as a possible marker of tumour development, invasion, and prognosis, providing new ideas for treating cancer.


Assuntos
Neoplasias da Mama , Neoplasias do Endométrio , Neoplasias Ovarianas , Feminino , Humanos , Prognóstico , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Mensageiro , Ligantes , Proteínas Reguladoras de Apoptose , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Biologia Computacional , Neoplasias da Mama/genética
15.
J Obstet Gynaecol ; 43(1): 2216280, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37227120

RESUMO

FAM64A is a mitotic regulator which promotes cell metaphase-anaphase transition and is highly expressed in a cell-cycle-dependent manner. In this study, we examined the clinicopathological and prognostic significance of FAM64A mRNA expression in gynecological cancers. We conducted a bioinformatics analysis of FAM64A mRNA expression using Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), xiantao, The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN), and Kaplan-Meier (KM) plotter databases. FAM64A expression was elevated in breast, cervical, endometrial, and ovarian cancers when compared with normal tissue. Expression was positively correlated with white race, low T stages, infiltrating ductal carcinoma, or favourable PAM50 classification in breast cancer patients, and with clinical stage, histological grade and TP53 mutation, and endometrial cancer serous subtype. FAM64A expression was negatively associated with overall and/or recurrence-free survival rates in breast and endometrial cancer patients, while the opposite was observed in cervical and ovarian cancer patients. FAM64A functioned as an independent predictor of overall and disease-specific survival in breast cancer patients. FAM64A-correlated genes were involved in ligand-receptor interactions, and chromosomal, cell cycle, and DNA replication processes in breast, cervical, endometrial and ovarian cancers. Top hub genes primarily included cell cycle-related proteins in breast cancer, mucins and acetylgalactosaminyl transferases in cervical cancer, kinesin family members in endometrial cancer, and synovial sarcoma X and the cancer/testis antigen in ovarian cancer. FAM64A mRNA expression was positively related to Th2 cell infiltration, but negatively associated with neutrophil and Th17 cell infiltration in breast, cervical, endometrial, and ovarian cancers. FAM64A expression may be considered a potential biomarker reflecting carcinogenesis, histogenesis, aggressive behaviour, and prognosis in gynecological cancers.Impact statementWhat is already known on this subject? FAM64A is located in cell nucleolar and nucleoplasmic regions, and during mitosis it putatively controls metaphase-to-anaphase transition. FAM64A appears to regulate different physiological processes, including apoptosis, tumorigenesis, neural differentiation, stress responses, and the cell cycle.What the results of this study add? FAM64A expression was up-regulated in breast, cervical, endometrial, and ovarian cancers, and positively correlated with white race, low T stages, infiltrating ductal carcinoma, or favourable PAM50 classification in breast cancer patients, and with clinical stage, histological grade, and TP53 mutation, and a serous subtype in endometrial cancer. FAM64A expression was negatively associated with overall and/or recurrence-free survival rates in breast and endometrial cancer patients, while the opposite was observed in cervical and ovarian cancer patients. FAM64A functioned as an independent predictor of overall and disease-specific survival in breast cancer. FAM64A-correlated genes were involved in ligand-receptor interactions, chromosomal, cell cycle, and DNA replication processes, while FAM64A mRNA expression was positively related to Th2 cell infiltration but negatively correlated with neutrophil and Th17 cell infiltration in four gynecological cancers.What the implications of these findings for clinical practice and/or further research? In the future, abnormal FAM64A mRNA expression may serve as a biomarker of carcinogenesis, histogenesis, aggressiveness, and prognosis in gynecological malignancies.


Assuntos
Neoplasias da Mama , Carcinoma Ductal , Neoplasias do Endométrio , Neoplasias Ovarianas , Feminino , Humanos , Masculino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Carcinoma Ductal/genética , Biologia Computacional , Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica , Ligantes , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , RNA Mensageiro
16.
J Obstet Gynaecol ; 43(1): 2213764, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37218920

RESUMO

To clarify the clinicopathological importance of REG4 mRNA expression, we used GEO, TCGA, xiantao, UALCAN, and Kaplan-Meier plotter for a bioinformatics analysis in breast, cervical, endometrial and ovarian cancers. Compared to normal tissues, REG4 expression was found to be upregulated in breast, cervical, endometrial, and ovarian cancers (p < 0.05). Breast cancer had a higher level of REG4 methylation than normal tissues (p < 0.05), which was negatively correlated with its mRNA expression. REG4 expression was positively correlated with oestrogen and progesterone receptor expression, and aggressiveness of PAM50 classification of breast cancer patients (p < 0.05). Breast infiltrating lobular carcinomas expressed more REG4 than ductal carcinomas (p < 0.05). The REG4-related signal pathways mainly included peptidase, keratinisation, brush border and digestion and so forth in gynecological cancers. Our results indicated that REG4 overexpression was associated with gynecological carcinogenesis and their histogenesis, and may be used as a marker for aggressive behaviour and prognosis of breast or cervical cancer.IMPACT STATEMENTWhat is already known on this subject? REG4 encodes a secretory c-type lectin and plays an essential role in inflammation, carcinogenesis, apoptotic and radiochemotherapeutic resistance.What do the results of this study add? As a standalone predictor, REG4 expression was positively correlated with progression-free survival. Expression of REG4 mRNA was positively associated with the T stage and adenosquamous cell carcinoma of cervical cancer. The top signal pathways related to REG4 included smell and chemical stimulus, peptidase, intermediate filament, and keratinisation in breast cancer; ligand-receptor interaction, metabolism of hormone, xenobiotic and retinol, peptidase, brush border and digestion in cervical and ovarian cancers; bile secretion, intermediate filament, chemical carcinogenesis, brush border and keratinisation in endometrial cancer. REG4 mRNA expression was positively correlated with DC cell infiltration in breast cancer, positively with Th17 cells, TFH, cytotoxic cells and T cells in cervical and endometrial cancers, and negatively with DC cell infiltration, cytotoxic cells and T cells in ovarian cancer. The top hub genes mainly included small proline rich protein 2B in breast cancer; fibrinogens and apoproteins in cervical, endometrial and ovarian cancers.What are the implications of these finding for clinical practice and/or further research? Our study has showed that REG4 mRNA expression is a potential biomarker or therapeutic target for gynaecologic cancers.


Assuntos
Neoplasias da Mama , Neoplasias do Endométrio , Neoplasias Ovarianas , Neoplasias do Colo do Útero , Feminino , Humanos , Prognóstico , RNA Mensageiro , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Neoplasias Ovarianas/patologia , Neoplasias do Endométrio/patologia , Carcinogênese/genética , Neoplasias da Mama/genética , Biologia Computacional , Proteínas Associadas a Pancreatite/genética
17.
J Obstet Gynaecol ; 43(1): 2182672, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36880525

RESUMO

BTG4 arrests the cell cycle and suppresses oocyte and embryonic development. We performed a bioinformatic analysis of BTG4 expression. BTG4 expression was downregulated in breast cancer compared with normal tissues (p < .05), but the opposite was observed in cervical, endometrial and ovarian cancers (p < .05). BTG4 methylation was negatively correlated with its mRNA expression in breast, cervical and endometrial cancers (p < .05). BTG4 mRNA expression was negatively correlated with T staging and distant metastasis of breast cancer; and with tumor invasion, clinical stage, low weight and BMI, low histological grade and no diabetes in endometrial cancer but positively with T stage and non-keratinizing squamous carcinoma in endometrial cancer. BTG4 expression was negatively correlated with the survival of ovarian cancer patients (p < .05), but positively for breast, cervical and endometrial cancers (p < .05). BTG4 expression is thus a potential marker reflecting the carcinogenesis, aggressiveness and prognosis in gynecological cancers.Impact StatementWhat is already known on this subject? Previous studies have revealed the structure and location of BTG4. BTG4 inhibit cell proliferative, promote apoptosis, induce G1 cell cycle arrest. BTG4 promotes the development of mouse embryos from cell stage 1 to 2. The methylation and biological function of BTG4 were clarified in gastric and/or colorectal cancer cells.What do the results of this study add? BTG4 is found to closely link to reflect the carcinogenesis, histogenesis, aggressive behaviors and prognosis of gynecological cancers, and involved in ligand-receptor interaction, microtubule motor activity, dynein light chain binding, cilium organization, assembly, and movement in endometrial and ovarian cancers.What are the implications of these finding for clinical practice and/or further research? Aberrant BTG4 mRNA expression can be employed as a marker of the tumorigenesis, histogenesis, aggressiveness and prognosis of gynecological cancers in the future practice and guide the investigation of BTG4-related signal pathways.


Assuntos
Neoplasias do Endométrio , Neoplasias Ovarianas , Feminino , Gravidez , Humanos , Animais , Camundongos , Prognóstico , Carcinogênese , Neoplasias Ovarianas/genética , Biologia Computacional , RNA Mensageiro , Proteínas de Ciclo Celular
18.
Histol Histopathol ; 38(4): 453-465, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36255176

RESUMO

Parafibromin is a protein encoded by the oncosuppressor CDC73 gene, whose mutation results in hyperparathyroidism-jaw tumor syndrome (HPT-JT) and parathyroid carcinoma. Down-regulation of parafibromin is linked to lung, gastric, colorectal, and ovarian cancer tumorigenesis. Parafibromin expression was detected by RT-PCR, bioinformatics analysis, Western blot, and immunohistochemistry; and compared with clinicopathological characteristics of breast cancer. CDC73-related genes and pathways were analyzed using bioinformatics analysis. Parafibromin expression was increased in breast cancer compared to normal tissues at both mRNA and protein levels (p<0.05). Among triple-negative breast cancers, it was higher in basal-like 1 than basal-like 2 patients (p<0.05) and mesenchymal than immunomodulatory patients (p<0.05). CDC73 mRNA expression was positively correlated with white race, non-infiltrating immune cells, favorable luminal subtypes of PAM50, and prognosis of breast cancer patients (p<0.05). The differential genes of CDC73 were classified into enzyme inhibitors, peptidase, and keratinization by KEGG (p<0.05). Similarly, it was classified into ribosomes, TGF-ß, oxidation phosphorylation, inositol phosphate metabolism, arachidonic acid metabolism, linoleic acid metabolism, ERBB, and VEGF signaling pathways by GSEA (p<0.05). The positively-correlated genes of CDC73 were involved in cell mobility, response to interferon α, nuclear pore and basket, and histone methyltransferase. The negatively-correlated genes of CDC73 were involved in the mitochondrial respiratory chain, thermogenesis, and ribosomes. Parafibromin expression was higher in invasive ductal than lobular carcinoma (p<0.05) and mucinous adenocarcinoma than others (p<0.05). Parafibromin immunoreactivity as an independent factor was positively associated with an increased overall survival rate of breast cancer patients (p<0.05). These findings suggest that up-regulation of parafibromin in breast cancer patients is closely linked to a favorable prognosis. It is involved in tumorigenesis and subsequent progression by regulating metabolism, ribosomes, and cytokines.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Prognóstico , Neoplasias da Mama/genética , Mutação , Fatores de Transcrição/genética , Carcinogênese , RNA Mensageiro , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
19.
Front Genet ; 13: 1006636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339000

RESUMO

BTG1 (B-cell translocation gene 1) may inhibit proliferation and cell cycle progression, induce differentiation, apoptosis, and anti-inflammatory activity. The goal of this study was to clarify the clinicopathological and prognostic significances of BTG1 mRNA expression and related signal pathways in cancers. Using the Oncomine, TCGA (the cancer genome atlas), xiantao, UALCAN (The University of ALabama at Birmingham Cancer data analysis Portal), and Kaplan-Meier plotter databases, we undertook a bioinformatics study of BTG1 mRNA expression in cancers. BTG1 expression was lower in gastric, lung, breast and ovarian cancer than normal tissue due to its promoter methylation, which was the opposite to BTG1 expression. BTG1 expression was positively correlated with dedifferentiation and histological grading of gastric cancer (p < 0.05), with squamous subtype and young age of lung cancer (p < 0.05), with infrequent lymph node metastasis, low TNM staging, young age, white race, infiltrative lobular subtype, Her2 negativity, favorable molecular subtyping, and no postmenopause status of breast cancer (p < 0.05), and with elder age, venous invasion, lymphatic invasion, and clinicopathological staging of ovarian cancer (p < 0.05). BTG1 expression was negatively correlated with favorable prognosis of gastric, lung or ovarian cancer patients, but the converse was true for breast cancer (p < 0.05). KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that the top signal pathways included cytokine-cytokine receptor interaction, cell adhesion molecules, chemokine, immune cell receptor and NF (nuclear factor)-κB signal pathways in gastric and breast cancer. The top hub genes mainly contained CD (cluster of differentiation) antigens in gastric cancer, FGF (fibroblast growth factor)-FGFR (FGF receptor) in lung cancer, NADH (nicotinamide adenine dinucleotide): ubiquinone oxidoreductase in breast cancer, and ribosomal proteins in ovarian cancer. BTG1 expression might be employed as a potential marker to indicate carcinogenesis and subsequent progression, even prognosis.

20.
Anal Chim Acta ; 1235: 340537, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368825

RESUMO

As the most aggressive reactive oxygen species (ROS), hydroxyl radical (•OH) can directly modulate the biological ion channel and interfere with the progression of diseases. Inspired by biological •OH-activated ion channel, we reported a novel •OH-regulated glass nanopore functionalized with protoporphyrin Ⅸ (PP) film. This system showed outstanding •OH selective response owing to the ultra-fast reaction between •OH and thiol derivatives. In this case, the PP film is responsible for the changing not only of wettability but also of the inner surface charge. The synergetic effect of the dual transitions can regulate the ion transportation within the nanochannels and enabled tremendous enhancement of responsive efficiency. The detection limit could be achieved down to 1.58 nM. Taking advantage of the excellent analytical performance and mechanical qualities of this glass nanopore, the changes of •OH in single living cells were in situ monitored. Together, this study is beneficial for exploring the role of •OH in pathological events and shows promising potential for biomedical research.


Assuntos
Radical Hidroxila , Nanoporos , Espécies Reativas de Oxigênio , Vidro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...