Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 13(5): 3088-3103, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37179921

RESUMO

Background: Recent reports have shown the potential for deep learning (DL) models to automatically segment of Couinaud liver segments and future liver remnant (FLR) for liver resections. However, these studies have mainly focused on the development of the models. Existing reports lack adequate validation of these models in diverse liver conditions and thorough evaluation using clinical cases. This study thus aimed to develop and perform a spatial external validation of a DL model for the automated segmentation of Couinaud liver segments and FLR using computed tomography (CT) in various liver conditions and to apply the model prior to major hepatectomy. Methods: This retrospective study developed a 3-dimensional (3D) U-Net model for the automated segmentation of Couinaud liver segments and FLR on contrast-enhanced portovenous phase (PVP) CT scans. Images were obtained from 170 patients from January 2018 to March 2019. First, radiologists annotated the Couinaud segmentations. Then, a 3D U-Net model was trained in Peking University First Hospital (n=170) and tested in Peking University Shenzhen Hospital (n=178) in cases with various liver conditions (n=146) and in candidates for major hepatectomy (n=32). The segmentation accuracy was evaluated using the dice similarity coefficient (DSC). Quantitative volumetry to evaluate the resectability was compared between manual and automated segmentation. Results: The DSC in the test data sets 1 and 2 for segments I to VIII was 0.93±0.01, 0.94±0.01, 0.93±0.01, 0.93±0.01, 0.94±0.00, 0.95±0.00, 0.95±0.00, and 0.95±0.00, respectively. The mean automated FLR and FLR% assessments were 493.51±284.77 mL and 38.53%±19.38%, respectively. The mean manual FLR and FLR% assessments were 500.92±284.38 mL and 38.35%±19.14%, respectively, in test data sets 1 and 2. For test data set 1, when automated segmentation of the FLR% was used, 106, 23, 146, and 57 cases were categorized as candidates for a virtual major hepatectomy of types 1, 2, 3, and 4, respectively; however, when manual segmentation of the FLR% was used, 107, 23, 146, and 57 cases were categorized as candidates for a virtual major hepatectomy of types 1, 2, 3, and 4, respectively. For test data set 2, all cases were categorized as candidates for major hepatectomy when automated and manual segmentation of the FLR% was used. No significant differences in FLR assessment (P=0.50; U=185,545), FLR% assessment (P=0.82; U=188,337), or the indications for major hepatectomy were noted between automated and manual segmentation (McNemar test statistic 0.00; P>0.99). Conclusions: The DL model could be used to fully automate the segmentation of Couinaud liver segments and FLR with CT prior to major hepatectomy in an accurate and clinically practicable manner.

2.
Abdom Radiol (NY) ; 47(3): 1082-1090, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064795

RESUMO

OBJECTIVE: To develop a 3D U-Net-based model for the automatic segmentation of the pancreas using the diameters, volume, and density of normal pancreases among Chinese adults. METHODS: A total of 2778 pancreas images (dataset 1) were retrospectively collected and randomly divided into training (n = 2252), validation (n = 245), and test (n = 281) datasets. The segmentation model for the pancreas was constructed through cascaded application of two 3D U-Net networks. The segmentation efficiency for the pancreas was evaluated by the Dice similarity coefficient (DSC). Another dataset of 3189 normal pancreas CT images (dataset 2) was obtained for external validation, including 1063 non-contrast images, 1063 arterial phase images, and 1063 portal venous phase images. The pancreas segmentation in dataset 2 was assessed objectively and manually revised by two radiologists. Then, the pancreatic volume, diameters, and average CT value for each phase of pancreas images in dataset 2 were calculated. The relationships between pancreas volume and age, sex, height, and weight were analyzed. RESULTS: In dataset 1, a mean DSC of 0.94 for the test dataset was achieved. In dataset 2, the objective assessment yielded a 90% satisfaction rate for the automatic segmentation of the pancreas as external validation. The diameters of the pancreas were 43.71-44.28 mm, 67.40-68.15 mm, and 114.53-117.06 mm, respectively. The average pancreatic volume was 63,969.06-65,247.75 mm3, which was greatest at the age of 18-38 and then decreased to a minimum at the age of 69-85. The CT value of the pancreas also decreased with age, from a maximum value of 38.87 ± 9.70 HU to a minimum of 27.72 ± 10.85 HU. CONCLUSION: The pancreas segmentation tool based on deep learning can segment the pancreas on CT images and measure its normal diameter, volume, and CT value accurately and effectively.


Assuntos
Aprendizado Profundo , China , Humanos , Processamento de Imagem Assistida por Computador , Pâncreas/diagnóstico por imagem , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA