Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 23, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191434

RESUMO

BACKGROUND: Viral diseases continue to pose a major threat to the world's commercial crops. The in-depth exploration and efficient utilization of resistance proteins have become crucial strategies for their control. However, current delivery methods for introducing foreign DNA suffer from host range limitations, low transformation efficiencies, tissue damage, or unavoidable DNA integration into the host genome. The nanocarriers provides a convenient channel for the DNA delivery and functional utilization of disease-resistant proteins. RESULTS: In this research, we identified a cysteine-rich venom protein (NbCRVP) in Nicotiana benthamiana for the first time. Virus-induced gene silencing and transient overexpression clarified that NbCRVP could inhibit the infection of tobacco mosaic virus, potato virus Y, and cucumber mosaic virus, making it a broad-spectrum antiviral protein. Yeast two-hybrid assay, co-immunoprecipitation, and bimolecular fluorescence complementation revealed that calcium-dependent lipid-binding (CaLB domain) family protein (NbCalB) interacted with NbCRVP to assist NbCRVP playing a stronger antiviral effect. Here, we demonstrated for the first time the efficient co-delivery of DNA expressing NbCRVP and NbCalB into plants using poly(amidoamine) (PAMAM) nanocarriers, achieving stronger broad-spectrum antiviral effects. CONCLUSIONS: Our work presents a tool for species-independent transfer of two interacting protein DNA into plant cells in a specific ratio for enhanced antiviral effect without transgenic integration, which further demonstrated new strategies for nanocarrier-mediated DNA delivery of disease-resistant proteins.


Assuntos
Nicotiana , Vírus de RNA , Nicotiana/genética , Cálcio , DNA , Antivirais/farmacologia
2.
Ecotoxicol Environ Saf ; 255: 114775, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933482

RESUMO

Nanoparticles (NPs) derived from RNA interference (RNAi) are considered a potentially revolutionary technique in the field of plant protection in the future. However, the application of NPs in RNAi is hindered by the conflict between the high cost of RNA production and the large quantity of materials required for field application. This study aimed to evaluate the antiviral efficacy of commercially available nanomaterials, such as chitosan quaternary ammonium salt (CQAS), amine functionalized silica nano powder (ASNP), and carbon quantum dots (CQD), that carried double-stranded RNA (dsRNA) via various delivery methods, including infiltration, spraying, and root soaking. ASNP-dsRNA NPs are recommended for root soaking, which is considered the most effective method of antiviral compound application. The most effective antiviral compound tested was CQAS-dsRNA NPs delivered by root soaking. Using fluorescence, FITC-CQAS-dsCP-Cy3, and CQD-dsCP-Cy3 NPs demonstrated the uptake and transport pathways of dsRNA NPs in plants when applied to plants in different modes. The duration of protection with NPs applied in various modes was then compared, providing references for evaluating the retention period of various types of NPs. All three types of NPs effectively silenced genes in plants and afforded at least 14 days of protection against viral infection. Particularly, CQD-dsRNA NPs could protect systemic leaves for 21 days following spraying.


Assuntos
Nanopartículas , Potyvirus , RNA de Cadeia Dupla , Potyvirus/genética , Antivirais/farmacologia , Interferência de RNA
3.
Cells ; 12(4)2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36831257

RESUMO

The ubiquitin-proteasome system (UPS) plays an important role in virus-host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana benthamiana against potato virus Y (PVY) infection. PVY infection strongly induced NbMLP43 transcription but decreased NbMLP43 at the protein level. We verified that B-box zinc finger protein 24 (NbBBX24) interacted directly with NbMLP43 and that NbBBX24, a light responsive factor, acted as an essential intermediate component targeting NbMLP43 for its ubiquitination and degradation via the UPS. PVY, tobacco mosaic virus, (TMV) and cucumber mosaic virus (CMV) infections could promote NbMLP43 ubiquitination and proteasomal degradation to enhance viral infection. Ubiquitination occurred at lysine 38 (K38) within NbMLP43, and non-ubiquitinated NbMLP43(K38R) conferred stronger resistance to RNA viruses. Overall, our results indicate that the novel NbMLP43 protein is a target of the UPS in the competition between defense and viral anti-defense and enriches existing theoretical studies on the use of UPS by viruses to promote infection.


Assuntos
Nicotiana , Doenças das Plantas , Potyvirus , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Potyvirus/patogenicidade
4.
Arch Virol ; 167(10): 2099-2102, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35829823

RESUMO

Two double stranded RNAs (dsRNAs) that likely represent the genome of an alphapartitivirus, tentatively named "impatiens cryptic virus 1" (ICV1), were recovered from Impatiens balsamina L. RNA1 (2008 bp) codes for the RNA-dependent RNA polymerase (RdRp) of ICV1, which shares <83% amino acid sequence identity with the RdRps of other alphapartitiviruses. RNA2 (1906 bp) codes for the coat protein (CP) of ICV1, which shares <60% amino acid sequence identity with the CPs of other alphapartitiviruses. Phylogenetic analysis suggested that ICV1 is closely related to plant alphapartitiviruses, including vicia cryptic virus, beet cryptic virus 1, carrot cryptic virus, and white clover cryptic virus 1. Using primers specific for RNA1 or RNA2, ICV1 could be detected in I. balsamina from various parts of China.


Assuntos
Impatiens , Vírus de RNA , Genoma Viral , Impatiens/genética , Filogenia , Doenças das Plantas , Vírus de RNA/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética
5.
ACS Omega ; 6(49): 33953-33960, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34926942

RESUMO

Resistant genes as an effective strategy to antivirus of plants are at the core of sustainability efforts. We use the antiviral protein major latex protein 28 (NbMLP28 plasmid) and N-2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC) designated as the HACC/NbMLP28 complex as protective gene delivery vectors to prepare nanonucleic acid drugs. The maximum drug loading capacity of HACC was 4. The particle size of HACC/NbMLP28 was measured by transmission electron microscopy and found to be approximately 40-120 nm, the particle dispersion index (PDI) was 0.448, and the ζ-potential was 22.3 mV. This facilitates its ability to deliver particles. Different controls of laser scanning confocal experiments verified the effective expression of NbMLP28 and the feasibility of nanodelivery. The optimal ratio of HACC/plasmid was 2:1. Finally, the nanoparticle/plasmid complex was tested for its ability to control diseases and was found to significantly improve resistance to three viruses. The enhanced resistance was particularly notable 4 days after inoculation. Taken together, these results indicate that HACC/NbMLP28 is a promising tool to treat plant viruses. To the best of our knowledge, this is the first study that successfully delivered and expressed antiviral protein particles in plants. This gene delivery system can effectively load antiviral plasmids and express them in plant leaves, significantly affecting the plant resistance of three RNA viruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...