Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 2192, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391549

RESUMO

We grew Sr-doped Bi2Se3 thin films using molecular beam epitaxy, and their high quality was verified using transmission electron microscopy. The thin films exhibited weak antilocalisation behaviours in magneto-resistance measurements, a typical transport signature of topological insulators, but were not superconducting. In addition, the carrier densities of the non-superconducting thin-film samples were similar to those of their superconducting bulk counterparts. Atom-by-atom energy-dispersive X-ray mapping also revealed similar Sr doping structures in the bulk and thin-film samples. Because no qualitative distinction between non-superconducting thin-film and superconducting bulk samples had been found, we turned to a quantitative statistical analysis, which uncovered a key structural difference between the bulk and thin-film samples. The separation between Bi layers in the same quintuple layer was compressed whereas that between the closest Bi layers in two neighbouring quintuple layers was expanded in the thin-film samples compared with the separations in pristine bulk Bi2Se3. In marked contrast, the corresponding changes in the bulk doped samples showed opposite trends. These differences may provide insight into the absence of superconductivity in doped topological insulator thin films.

2.
Nanoscale ; 9(19): 6327-6333, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28230871

RESUMO

The surface oxidation of palladium nanocrystals plays an important role in changing the active sites and subsequently influencing the catalytic reactivity. Such a microscopy study on surface oxidation, down to the atomic scale, is essential for understanding the structure-property correlations of palladium nanocrystal based catalysts. Herein, we present an in situ atomic scale study on the surface oxidation behavior of palladium nanocrystals, which is induced by electron beam irradiation under low oxygen partial pressure and at room temperature inside an environmental transmission electron microscope. We found that: (i) surface oxidation initially started at the edge sites with atomic steps or vertex sites, which served as active sites for oxidation; (ii) the oxidation reaction proceeded with a much faster rate on the {111} surface, indicating a certain crystallography preference; (iii) nanometer-sized palladium monoxide islands were formed on the surfaces eventually. The results from our in situ studies provide insightful knowledge, and will be of certain importance for the design of improved functional catalysts in future.

3.
Sci Bull (Beijing) ; 62(11): 775-778, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36659273

RESUMO

The dynamics of oxidation of cobalt nanoparticles were directly revealed by in situ environmental transmission electron microscopy. Firstly, cobalt nanoparticles were oxidized to polycrystalline cobalt monoxide, then to polycrystalline tricobalt tetroxide, in the presence of oxygen with a low partial pressure. Numerous cavities (or voids) were formed during the oxidation, owing to the Kirkendall effect. Analysis of the oxides growth suggested that the oxidation of cobalt nanoparticles followed a parabolic rate law, which was consistent with diffusion-limited kinetics. In situ transmission electron microscopy allowed potential atomic oxidation pathways to be considered. The outward diffusion of cobalt atoms inside the oxide layer controlled the oxidation, and formed the hollow structure. Irradiation by the electron beam, which destroyed the sealing effect of graphite layer coated on the cobalt surface and resulted in fast oxidation rate, played an important role in activating and promoting the oxidations. These findings further our understanding on the microscopic kinetics of metal nanocrystal oxidation and knowledge of energetic electrons promoting oxidation reaction.

4.
Chem Commun (Camb) ; 50(79): 11713-6, 2014 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-25142432

RESUMO

Sub-10 nm AuPtPd alloy trimetallic nanoparticles (TMNPs) with a high oxidation-resistant property were prepared by photo-deposition followed by a high temperature (700-900 °C) air annealing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...