Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 6: 6873, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25898120

RESUMO

The maintenance of sensory hair cell stereocilia is critical for lifelong hearing; however, mechanisms of structural homeostasis remain poorly understood. Conflicting models propose that stereocilia F-actin cores are either continually renewed every 24-48 h via a treadmill or are stable, exceptionally long-lived structures. Here to distinguish between these models, we perform an unbiased survey of stereocilia actin dynamics in more than 500 utricle hair cells. Live-imaging EGFP-ß-actin or dendra2-ß-actin reveal stable F-actin cores with turnover and elongation restricted to stereocilia tips. Fixed-cell microscopy of wild-type and mutant ß-actin demonstrates that incorporation of actin monomers into filaments is required for localization to stereocilia tips. Multi-isotope imaging mass spectrometry and live imaging of single differentiating hair cells capture stereociliogenesis and explain uniform incorporation of (15)N-labelled protein and EGFP-ß-actin into nascent stereocilia. Collectively, our analyses support a model in which stereocilia actin cores are stable structures that incorporate new F-actin only at the distal tips.


Assuntos
Actinas/fisiologia , Orelha Interna/citologia , Estereocílios/fisiologia , Animais , Transporte Biológico , Proteínas de Fluorescência Verde , Humanos , Leucina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Coloração e Rotulagem , Transfecção
2.
Cell Rep ; 10(11): 1811-8, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25772365

RESUMO

Hair cells of the inner ear are mechanoreceptors for hearing and balance, and proteins highly enriched in hair cells may have specific roles in the development and maintenance of the mechanotransduction apparatus. We identified XIRP2/mXinß as an enriched protein likely to be essential for hair cells. We found that different isoforms of this protein are expressed and differentially located: short splice forms (also called XEPLIN) are targeted more to stereocilia, whereas two long isoforms containing a XIN-repeat domain are in both stereocilia and cuticular plates. Mice lacking the Xirp2 gene developed normal stereocilia bundles, but these degenerated with time: stereocilia were lost and long membranous protrusions emanated from the nearby apical surfaces. At an ultrastructural level, the paracrystalline actin filaments became disorganized. XIRP2 is apparently involved in the maintenance of actin structures in stereocilia and cuticular plates of hair cells, and perhaps in other organs where it is expressed.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Nucleares/metabolismo , Estereocílios/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/genética , Células Ciliadas Auditivas/ultraestrutura , Proteínas com Domínio LIM/genética , Camundongos , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico
3.
Nature ; 481(7382): 520-4, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22246323

RESUMO

Hair cells of the inner ear are not normally replaced during an animal's life, and must continually renew components of their various organelles. Among these are the stereocilia, each with a core of several hundred actin filaments that arise from their apical surfaces and that bear the mechanotransduction apparatus at their tips. Actin turnover in stereocilia has previously been studied by transfecting neonatal rat hair cells in culture with a ß-actin-GFP fusion, and evidence was found that actin is replaced, from the top down, in 2-3 days. Overexpression of the actin-binding protein espin causes elongation of stereocilia within 12-24 hours, also suggesting rapid regulation of stereocilia lengths. Similarly, the mechanosensory 'tip links' are replaced in 5-10 hours after cleavage in chicken and mammalian hair cells. In contrast, turnover in chick stereocilia in vivo is much slower. It might be that only certain components of stereocilia turn over quickly, that rapid turnover occurs only in neonatal animals, only in culture, or only in response to a challenge like breakage or actin overexpression. Here we quantify protein turnover by feeding animals with a (15)N-labelled precursor amino acid and using multi-isotope imaging mass spectrometry to measure appearance of new protein. Surprisingly, in adult frogs and mice and in neonatal mice, in vivo and in vitro, the stereocilia were remarkably stable, incorporating newly synthesized protein at <10% per day. Only stereocilia tips had rapid turnover and no treadmilling was observed. Other methods confirmed this: in hair cells expressing ß-actin-GFP we bleached fiducial lines across hair bundles, but they did not move in 6 days. When we stopped expression of ß- or γ-actin with tamoxifen-inducible recombination, neither actin isoform left the stereocilia, except at the tips. Thus, rapid turnover in stereocilia occurs only at the tips and not by a treadmilling process.


Assuntos
Células Ciliadas Auditivas Internas/citologia , Espectrometria de Massas/métodos , Proteínas/metabolismo , Estereocílios/metabolismo , Actinas/metabolismo , Animais , Animais Recém-Nascidos , Clareadores , Galinhas , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Marcadores Fiduciais , Recombinação Homóloga/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Rana catesbeiana , Tamoxifeno/farmacologia
4.
J Neurochem ; 103(6): 2651-64, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17961150

RESUMO

Acetylcholine is a key neurotransmitter of the inner ear efferent system. In this study, we identify two novel nAChR subunits in the inner ear: α1 and γ, encoded by Chrna1 and Chrng, respectively. In situ hybridization shows that the messages of these two subunits are present in vestibular and cochlear hair cells during early development. Chrna1 and Chrng expression begin at embryonic stage E13.5 in the vestibular system and E17.5 in the organ of Corti. Chrna1 message continues through P7, whereas Chrng is undetectable at post-natal stage P6. The α1 and γ subunits are known as muscle-type nAChR subunits and are surprisingly expressed in hair cells which are sensory-neural cells. We also show that ATOH1/MATH1, a transcription factor essential for hair cell development, directly activates CHRNA1 transcription. Electrophoretic mobility-shift assays and supershift assays showed that ATOH1/E47 heterodimers selectively bind on two E boxes located in the proximal promoter of CHRNA1. Thus, Chrna1 could be the first transcriptional target of ATOH1 in the inner ear. Co-expression in Xenopus oocytes of the α1 subunit does not change the electrophysiological properties of the α9α10 receptor. We suggest that hair cells transiently express α1γ-containing nAChRs in addition to α9α10, and that these may have a role during development of the inner ear innervation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Orelha Interna/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Receptores Nicotínicos/biossíntese , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Núcleo Celular/metabolismo , Células Cultivadas , Orelha Interna/embriologia , Ensaio de Desvio de Mobilidade Eletroforética , Fenômenos Eletrofisiológicos , Feminino , Citometria de Fluxo , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Luciferases/metabolismo , Camundongos , Dados de Sequência Molecular , Oócitos/metabolismo , Técnicas de Patch-Clamp , Plasmídeos/genética , Gravidez , RNA/biossíntese , RNA/genética , Receptores Nicotínicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Xenopus laevis
5.
Neuron ; 50(2): 277-89, 2006 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16630838

RESUMO

TRPA1, a member of the transient receptor potential (TRP) family of ion channels, is expressed by dorsal root ganglion neurons and by cells of the inner ear, where it has proposed roles in sensing sound, painful cold, and irritating chemicals. To test the in vivo roles of TRPA1, we generated a mouse in which the essential exons required for proper function of the Trpa1 gene were deleted. Knockout mice display behavioral deficits in response to mustard oil, to cold ( approximately 0 degrees C), and to punctate mechanical stimuli. These mice have a normal startle reflex to loud noise, a normal sense of balance, a normal auditory brainstem response, and normal transduction currents in vestibular hair cells. TRPA1 is apparently not essential for hair-cell transduction but contributes to the transduction of mechanical, cold, and chemical stimuli in nociceptor sensory neurons.


Assuntos
Mapeamento Encefálico , Células Ciliadas Auditivas/fisiologia , Mecanotransdução Celular/fisiologia , Dor/fisiopatologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Percepção Auditiva/fisiologia , Temperatura Baixa , Camundongos , Camundongos Knockout , Nociceptores/metabolismo , Estimulação Física , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/genética
6.
Science ; 307(5712): 1114-8, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15653467

RESUMO

In mammals, hair cell loss causes irreversible hearing and balance impairment because hair cells are terminally differentiated and do not regenerate spontaneously. By profiling gene expression in developing mouse vestibular organs, we identified the retinoblastoma protein (pRb) as a candidate regulator of cell cycle exit in hair cells. Differentiated and functional mouse hair cells with a targeted deletion of Rb1 undergo mitosis, divide, and cycle, yet continue to become highly differentiated and functional. Moreover, acute loss of Rb1 in postnatal hair cells caused cell cycle reentry. Manipulation of the pRb pathway may ultimately lead to mammalian hair cell regeneration.


Assuntos
Proliferação de Células , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Internas/fisiologia , Proteína do Retinoblastoma/fisiologia , Animais , Apoptose , Contagem de Células , Ciclo Celular , Diferenciação Celular , Forma Celular , Cóclea/citologia , Cóclea/embriologia , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Genes do Retinoblastoma , Camundongos , Camundongos Knockout , Mitose , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Regeneração , Proteína do Retinoblastoma/genética , Sáculo e Utrículo/embriologia , Sáculo e Utrículo/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia
7.
Nature ; 432(7018): 723-30, 2004 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-15483558

RESUMO

Mechanical deflection of the sensory hair bundles of receptor cells in the inner ear causes ion channels located at the tips of the bundle to open, thereby initiating the perception of sound. Although some protein constituents of the transduction apparatus are known, the mechanically gated transduction channels have not been identified in higher vertebrates. Here, we investigate TRP (transient receptor potential) ion channels as candidates and find one, TRPA1 (also known as ANKTM1), that meets criteria for the transduction channel. The appearance of TRPA1 messenger RNA expression in hair cell epithelia coincides developmentally with the onset of mechanosensitivity. Antibodies to TRPA1 label hair bundles, especially at their tips, and tip labelling disappears when the transduction apparatus is chemically disrupted. Inhibition of TRPA1 protein expression in zebrafish and mouse inner ears inhibits receptor cell function, as assessed with electrical recording and with accumulation of a channel-permeant fluorescent dye. TRPA1 is probably a component of the transduction channel itself.


Assuntos
Células Ciliadas Auditivas/metabolismo , Audição/fisiologia , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Vertebrados/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Anticorpos/imunologia , Orelha Interna/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Canais Iônicos/biossíntese , Canais Iônicos/genética , Canais Iônicos/imunologia , Camundongos , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Rana catesbeiana , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia
8.
J Neurosci ; 22(11): 4286-92, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12040033

RESUMO

Norrie disease is an X-linked recessive syndrome of blindness, deafness, and mental retardation. A knock-out mouse model with an Ndp gene disruption was studied. We examined the hearing phenotype, including audiological, histological, and vascular evaluations. As is seen in humans, the mice had progressive hearing loss leading to profound deafness. The primary lesion was localized to the stria vascularis, which houses the main vasculature of the cochlea. Fluorescent dyes showed an abnormal vasculature in this region and eventual loss of two-thirds of the vessels. We propose that one of the principal functions of norrin in the ear is to regulate the interaction of the cochlea with its vasculature.


Assuntos
Vasos Sanguíneos/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Proteínas do Tecido Nervoso/deficiência , Estimulação Acústica , Adulto , Animais , Audiometria de Tons Puros , Limiar Auditivo , Cegueira/genética , Cóclea/irrigação sanguínea , Cóclea/patologia , Cóclea/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Potenciais Evocados Auditivos do Tronco Encefálico , Proteínas do Olho/genética , Corantes Fluorescentes , Genes Recessivos , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Humanos , Deficiência Intelectual/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fenótipo , Retina/patologia , Estria Vascular/patologia , Síndrome , Testes de Função Vestibular , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...