Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 12(10): 3092-3105, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37712503

RESUMO

Recombinant proteins have broad applications. However, there is a lack of a recombinant protein expression system specifically for large-scale production in anaerobic hosts. Here, we developed a powerful and stringently inducible protein expression system based on the bacteriophage T7 system in the strictly anaerobic solvent-producing Clostridium saccharoperbutylacetonicum. With the integration of a codon optimized T7 RNA polymerase into the chromosome, a single plasmid carrying a T7 promoter could efficiently drive high-level expression of the target gene in an orthogonal manner, which was tightly regulated by a lactose-inducible system. Furthermore, by deleting beta-galactosidase genes involved in lactose metabolism, the transcriptional strength was further improved. In the ultimately optimized strain TM-07, the transcriptional strength of the T7 promoter showed 9.5-fold increase compared to the endogenous strong promoter Pthl. The heterologous NADP+-dependent 3-hydroxybutyryl-CoA dehydrogenase (Hbd1) from C. kluyveri was expressed in TM-07, and the yield of the recombinant protein reached 30.4-42.4% of the total cellular protein, surpassing the strong protein expression systems in other Gram-positive bacteria. The relative activity of Hbd1 in the crude enzyme was 198.0 U/mg, which was 8.3-fold higher than the natural activity in C. kluyveri. The relative activity of the purified enzyme reached 467.4 U/mg. To the best of our knowledge, this study represents the first application of the T7 expression system in Clostridium species, and this optimized expression system holds great potential for large-scale endotoxin-free recombinant protein production under strictly anaerobic conditions. This development paves the way for significant advancements in biotechnology and opens up new avenues for industrial applications.


Assuntos
Bacteriófago T7 , Lactose , Bacteriófago T7/genética , Proteínas Recombinantes/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Clostridium/genética , Clostridium/metabolismo
2.
Food Microbiol ; 115: 104333, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567623

RESUMO

Natural environment serves as a reservoir for Burkholderia cepacia complex organisms, including the highly transmissible opportunistic human pathogen B. cenocepacia. Currently, there is a lack of an effective and quantitative method for B. cenocepacia detection in fresh food and other environmental niches. A quantitative real-time PCR (qPCR) detection method for B. cenocepacia bacteria was established in this study and validated using artificially inoculated fresh vegetable samples. Genome-wide comparative methods were applied to identify target regions for the design of species-specific primers. Assay specificity was measured with 12 strains of closely related Burkholderia bacteria and demonstrated the primer pair BCF6/R6 were 100% specific for detection of B. cenocepacia. The described qPCR assay evaluated B. cenocepacia with a 2 pg µl-1 limit of detection and appropriate linearity (R2 = 0.999). In 50 samples of experimentally infected produce (lettuce, onion, and celery), the assay could detect B. cenocepacia as low as 2.6 × 102 cells in each sample equal to 1 g. The established qPCR method quantitatively detects B. cenocepacia with high sensitivity and specificity, making it a promising technique for B. cenocepacia detection and epidemiological research on B. cepacia complex organisms from fresh vegetables.


Assuntos
Burkholderia cenocepacia , Complexo Burkholderia cepacia , Humanos , Verduras
3.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838575

RESUMO

Food allergy is a potentially life-threatening health concern caused by immunoglobulin E (IgE) antibodies that mistakenly recognize normally harmless food proteins as threats. Peanuts and tree nuts contain several seed storage proteins that commonly act as allergens. Glandless cottonseed, lacking the toxic compound gossypol, is a new food source. However, the seed storage proteins in cottonseed may act as allergens. To assess this risk, glandless cottonseed protein extracts were evaluated for IgE binding by peanut and tree nut allergic volunteers. ELISA demonstrated that 25% of 32 samples had significant binding to cottonseed extracts. Immunoblot analysis with pooled sera indicated that IgE recognized a pair of bands migrating at approximately 50 kDa. Excision of these bands and subsequent mass-spectrometric analysis demonstrated peptide matches to cotton C72 and GC72 vicilin and legumin A and B proteins. Further, in silico analysis indicated similarity of the cotton vicilin and legumin proteins to peanut vicilin (Ara h 1) and cashew nut legumin (Ana o 2) IgE-binding epitopes among others. The observations suggest both the cotton vicilin and legumin proteins were recognized by the nut allergic IgE, and they should be considered for future allergen risk assessments evaluating glandless cottonseed protein products.


Assuntos
Fabaceae , Hipersensibilidade Alimentar , Humanos , Nozes , Arachis/metabolismo , Óleo de Sementes de Algodão , Imunoglobulina E , Alérgenos/química , Fabaceae/metabolismo , Proteínas de Armazenamento de Sementes , Proteínas de Plantas/metabolismo , Antígenos de Plantas
4.
Microbiol Resour Announc ; 12(2): e0123122, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36700629

RESUMO

The genomes of seven Aeromonas veronii strains isolated from tissues of healthy or diseased channel catfish obtained from Alabama, USA, fish farms were sequenced and annotated. These genome sequences will enable comparative analyses to determine the roles these bacteria play in catfish aquaculture and the development of new preventative or management strategies.

5.
Fish Shellfish Immunol ; 132: 108502, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36565998

RESUMO

Vibrio parahaemolyticus is a Gram-negative bacterium commonly found in marine and estuarine environments and is endemic among the global shrimp aquaculture industry. V. parahaemolyticus proteins PirA and PirB have been determined to be major virulence factors that contribute significantly to the development of acute hepatopancreatic necrosis disease. Our previous work had demonstrated the lethality of recombinant PirA and PirB proteins to Pacific white shrimp (Liptopenaeus vannamei). To understand the host response to these proteins, recombinant PirA and PirB proteins were administered using a reverse gavage method and individual shrimp were then sampled over time. Shrimp hepatopancreas libraries were generated and RNA sequencing was performed on the control and recombinant PirA/B-treated samples. Differentially expressed genes were identified among the assayed time points. Differentially expressed genes that were co-expressed at the later time points (2-, 4- and 6-h) were also identified and gene associations were established to predict functional physiological networks. Our analysis reveals that the recombinant PirA and PirB proteins have likely initiated an early host response involving several cell survival signaling and innate immune processes.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Proteínas de Bactérias/genética , Vibrio parahaemolyticus/fisiologia , Fatores de Virulência , Aquicultura , Perfilação da Expressão Gênica/veterinária , Doença Aguda
6.
Artigo em Inglês | MEDLINE | ID: mdl-36282625

RESUMO

Immobilization is a common strategy used to protect microbial cells to improve the performance of bioprocesses. However, the interaction mechanism between the cells and the immobilization material is generally poorly understood. In this study, we employed natural polysaccharide-based materials as immobilization carriers for clostridial fermentation in an attempt to enhance the production of butanol (a valuable biofuel/biochemical but highly toxic to the host cells) and meanwhile elucidate the interaction mechanisms related to immobilization. The utilization of chitosan powder as the immobilization carrier enhanced butanol productivity by 97% in the fermentation with Clostridium saccharoperbutylacetonicum N1-4 and improved butanol titer by 21% in the fermentation with Clostridium beijerinckii NCIMB 8052. Additionally, analogue derivatives using microcrystalline cellulose (MCC) and cotton cationized on the surface with 3-chloro-2-hydroxypropyltrymethylammonium (CHPTA) and 2-chloro-N,N-diethylaminoethyl chloride (DEAEC) were prepared and used as immobilization carriers for similar fermentation conditions. The CHPTA derivatives showed slightly increased production of butanol and total solvent with C. saccharoperbutylacetonicum. Overall, our results indicated that the interaction between the cell and the carrier material occurs through a double mechanism involving adsorption immobilization and induced aggregation. This work provides insights concerning the effects of the chemical properties of the carrier material (such as the cation density and surface area) on fermentation performance, enabling a better understanding of the interaction between bacterial cells and the cationic materials. The derivatization strategies employed in this study can be applied to most cellulosic materials to modulate the properties and enhance the interaction between the cell and the carrier material for immobilization, thus improving the bioprocess performance.

7.
Sci Rep ; 11(1): 9209, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911142

RESUMO

In this work, we sequentially extracted water (CSPw)- and alkali (CSPa)-soluble protein fractions from glandless cottonseed. SDS-Gel electrophoresis separated CSPw and CSPa to 8 and 14 dominant polypeptide bands (110-10 kDa), respectively. Liquid chromatography-electrospray ionization-tandem mass spectrometry identified peptide fragments from 336 proteins. While the majority of peptides were identified as belonging to vicilin and legumin storage proteins, peptides from other functional and uncharacterized proteins were also detected. Based on the types (unique peptide count) and relative abundance (normalized total ion current) of the polypeptides detected by mass spectrometry, we found lower levels (abundance) and types of legumin isoforms, but higher levels and more fragments of vicilin-like antimicrobial peptides in glandless samples, compared to glanded samples. Differences in peptide fragment patterns of 2S albumin and oleosin were also observed between glandless and glanded protein samples. These differences might be due to the higher extraction recovery of proteins from glandless cottonseed as proteins from glanded cottonseed tend to be associated with gossypol, reducing extraction efficiency. This work enriches the fundamental knowledge of glandless cottonseed protein composition. For practical considerations, this peptide information will be helpful to allow better understanding of the functional and physicochemical properties of glandless cottonseed protein, and improving the potential for food or feed applications.


Assuntos
Óleo de Sementes de Algodão/isolamento & purificação , Óleo de Sementes de Algodão/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/metabolismo , Óleo de Sementes de Algodão/química , Proteínas de Plantas/análise , Proteínas de Armazenamento de Sementes/análise , Sementes/química , Leguminas
8.
Microb Pathog ; 155: 104886, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33915208

RESUMO

Acute hepatopancreatic necrosis disease (AHPND), caused by emerging strains of Vibrio Parahaemolyticus, is of concern in shrimp aquaculture. Secreted proteins PirA and PirB, encoded by a plasmid harbored in V. parahaemolyticus, were determined to be the major virulence factors that induce AHPND. To better understand pathogenesis associated with PirA and PirB, recombinant proteins rPirA and rPirB were produced to evaluate their relative toxicities in shrimp. By challenging shrimp at concentration of 3 µM with reverse gavage method, rPirA and rPirB (approximately 0.4 and 1.5 µg per g of body weight, respectively) caused 27.8 ± 7.8% and 33.3 ± 13.6% mortality, respectively; combination of 3 µM rPirA and rPirB resulted in 88.9 ± 7.9% mortality. Analysis of protein mobility in native gel revealed that rPirB was apparently in the form of monomer while rPirA was oligomerized as an octamer-like macromolecule, suggesting that inter- and intra-molecular interactions between rPirA and rPirB enhanced the toxic effect. An attempt to block or reduce rPirA activity with a putative receptor, N-acetyl-galactosamine, was unsuccessful, implying that remodeling analysis of PirA molecule, such as the octamer observed in this study, is necessary. Results of this study provided new insight into toxic mechanism of PirA and PirB and shall help design strategic antitoxin methods against AHPND in shrimp.


Assuntos
Penaeidae , Vibrio parahaemolyticus , Animais , Plasmídeos , Alimentos Marinhos , Vibrio parahaemolyticus/genética , Fatores de Virulência/genética
9.
FEMS Microbiol Lett ; 367(20)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33045069

RESUMO

The Gram-negative bacterium, Aeromonas hydrophila, has been responsible for extensive losses in the catfish industry for over a decade. Due to this impact, there are ongoing efforts to understand the basic mechanisms that contribute to virulent A. hydrophila (vAh) outbreaks. Recent challenge models demonstrated that vAh cultured in the presence of the iron chelating agent deferoxamine mesylate (DFO) were more virulent to channel catfish (Ictalurus punctatus). Interestingly, differential gene expression of select iron acquisition genes was unremarkable between DFO and non-DFO cultures, posing the question: why the increased virulence? The current work sought to evaluate growth characteristics and protein expression of vAh after the addition of DFO. A comparative proteome analysis revealed differentially expressed proteins among tryptic soy broth (TSB) and TSB + DFO treatments. Upregulated proteins identified among the TSB + DFO treatment were enriched for gene ontology groups including iron ion transport, siderophore transport and siderophore uptake transport, all iron acquisition pathways. Protein-protein interactions were also evaluated among the differentially expressed proteins and predicted that many of the upregulated iron acquisition proteins likely form functional physiological networks. The proteome analysis of the vAh reveals valuable information about the basic biological processes likely leading to increased virulence during iron restriction in this organism.


Assuntos
Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/metabolismo , Ferro/metabolismo , Proteoma , Sideróforos/farmacologia , Aeromonas hydrophila/genética , Proteínas de Bactérias/genética , Regulação para Cima/efeitos dos fármacos
10.
Fish Shellfish Immunol ; 106: 1031-1041, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805416

RESUMO

Channel catfish (Ictalurus punctatus) vaccinated with pcDNA3.1-IAg52b plasmid DNA vaccine encoding immobilization antigen genes of Ichthyophthirius multifiliis (Ich) produced anti-Ich antibodies and were partially protected (20% survival) in a previous study. Here we evaluated whether a higher dose or two doses of pcDNA3.1-IAg52b vaccine could provide better protection for catfish against Ich. Fish were distributed into 6 groups and vaccinated using following schemes: 1.10 µg pcDNA3.1-IAg52b fish-1, 2.20 µg pcDNA3.1-IAg52b fish-1, 3. two doses of 10 µg pcDNA3.1-IAg52b fish-1 with 7 days between doses, 4.20 µg pcDNA3.1 fish-1 (mock-vaccinated control), 5.15,000 live theronts fish-1 (positive control), and 6. non-vaccinated and non-challenge control. Parasite infection levels, serum anti-Ich antibody levels, fish mortality and immune-related gene expression were determined during the trial. Fish vaccinated with a single dose of 20 µg pcDNA3.1-IAg52b fish-1 or two doses of 10 µg fish-1 had higher anti-Ich antibody levels than fish receiving a single dose of 10 µg fish-1. Survival was significantly higher in fish receiving 20 µg vaccine fish-1 (35.6%) or 2 doses of 10 µg fish-1 (48.9%) than fish injected with a single dose of 10 µg fish-1 (15.6%) or mock-vaccinated control (0%). Fish vaccinated at the dose 20 µg fish-1 had higher expression of vaccine DNA in muscle than fish vaccinated with 10 µg fish-1. Fish vaccinated with the DNA vaccine showed higher up-regulation than mock-vaccinated control in the expression of IgM, CD4, MHC I and TcR-α genes during most of time points after vaccination. Further studies are needed to improve efficacy of DNA vaccines by using multiple antigens in the DNA vaccines.


Assuntos
Antígenos de Protozoários/imunologia , Infecções por Cilióforos/prevenção & controle , Doenças dos Peixes/prevenção & controle , Hymenostomatida/imunologia , Ictaluridae/imunologia , Proteínas de Protozoários/imunologia , Vacinas de DNA , Animais , Infecções por Cilióforos/genética , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/veterinária , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Ictaluridae/genética , Ictaluridae/parasitologia , Músculos
11.
Food Chem ; 325: 126907, 2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32387953

RESUMO

To promote application of cottonseed protein products in food industry, this work measured antioxidant activities of two water soluble protein samples (Gl-L and Gd-L) isolated in a lab scale from glandless and common glanded cottonseed meal, respectively, and one soluble protein samples (Gd-P) in a pilot scale from glanded cottonseed meal. SDS-gel electrophoresis showed that the distribution patterns of the peptide fragments in Gl-L and Gd-L were similar, but more fragments and higher molecular mass bands were observed in the Gd-P gel image. While Gd-P showed the highest activities, Gl-L and Gd-L exhibited comparable 1,1-diphenyl-2-picrylhydrazyl and hydroxyl radical-scavenging activities in most cases. In contrast, Gd-P showed lower capability of inhibition of linoleic acid autoxidation than Gl-L and Gd-L. It would be of great interest in further research on these protein fractions in food products and processes (such as roasting) involved in the protective effects of food spoilage.

12.
Fish Shellfish Immunol ; 94: 308-317, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31470140

RESUMO

The channel catfish (Ictalurus punctatus) immune response against Ichthyophthirius multifiliis (Ich) after vaccination using plasmid DNA vaccines pcDNA3.1-IAg52a and pcDNA3.1-IAg52b, encoding Ich immobilization antigen genes was studied. Parasite infection level, serum anti-Ich antibodies level, fish mortality after theront challenge, and immune-related gene expression were measured. After in vitro transfection of walking catfish gill cells (G1b) with both pcDNA3.1-IAg52a and pcDNA3.1-IAg52b, antigens IAG52A and IAG52B were detected. During the vaccination trial, 76-fold increase in the Iag52b gene expression was observed in the vaccinated fish group h4 post vaccination. Administration of DNA vaccines by IM injection induced significant gene up-regulation in the head kidney, including immunoglobulin M (IgM), cluster of differentiation 4 (CD4), major histocompatibility I (MHC I), and T cell receptor α (TcR-α) from h4 to d5 post immunization. Fish vaccinated with DNA vaccines or theronts showed increased gene expression of the cytokine interferon (IFN-γ), complement component 3 (C3), and toll-like receptor-1 (TLR-1). Anti-Ich antibodies were detected in fish received pcDNA3.1-IAg52a, pcDNA3.1-IAg52b and the combination of both vaccines d10 post vaccination. Fish vaccinated with pcDNA3.1-IAg52b showed mild parasite infection level, partial survival (20%) and longer mean day to death (MDD) after theront challenge. By contrast, a heavy parasite load, 0% survival and short MDD were observed in the sham vaccinated control fish that received pcDNA3.1 (plasmid without genes encoding Ich immobilization antigen). Further research is needed to improve DNA vaccines for Ich that can induce strong protective immunity in fish. Suggested studies include improved transfection efficiency, use of appropriate adjuvants and including additional parasite antigen genes in the plasmid.


Assuntos
Infecções por Cilióforos/veterinária , Doenças dos Peixes/prevenção & controle , Hymenostomatida/imunologia , Ictaluridae , Imunidade Inata , Vacinas Protozoárias/farmacologia , Vacinação/veterinária , Imunidade Adaptativa , Animais , Antígenos de Protozoários/farmacologia , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/prevenção & controle , Doenças dos Peixes/imunologia , Proteínas de Protozoários/farmacologia , Vacinas de DNA/farmacologia
13.
Microbiologyopen ; 8(5): e00733, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30272387

RESUMO

Streptococcus agalactiae is a highly pathogenic bacterium of aquatic species and terrestrial animals worldwide, whereas chitin and its derivative chitosan are among the most abundant biopolymers found in nature, including the aquatic milieu. The present investigation focused on the capability of S. agalactiae to degrade and utilize these polymers. Growth of S. agalactiae in the presence of colloid chitin, chitosan, or N-acetyl-glucosamine (GlcNAc) was evaluated. Chitosanase production was measured daily over 7 days of growth period and degraded products were evaluated with thin later chorography. Chitin had no effect on the growth of S. agalactiae. Degraded chitin, however, stimulated the growth of S. agalactiae. S. agalactiae cells did not produce chitinase to degrade chitin; however, they readily utilize GlcNAc (product of degraded chitin) as sole source of carbon and nitrogen for growth. Chitosan at high concentrations had antibacterial activities against S. agalactiae, while in the presence of lower than the inhibitory level of chitosan in the medium, S. agalactiae secrets chitosanase to degrade chitosan, and utilizes it to a limited extent to benefit growth. The interaction of S. agalactiae with chitin hydrolytes and chitosan could play a role in the diverse habitat distribution and pathogenicity of S. agalactiae worldwide.


Assuntos
Quitina/metabolismo , Quitosana/metabolismo , Streptococcus agalactiae/crescimento & desenvolvimento , Streptococcus agalactiae/metabolismo , Acetilglucosamina/metabolismo , Cromatografia em Camada Fina , Hidrólise
14.
Fish Shellfish Immunol ; 86: 223-229, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30453044

RESUMO

Motile Aeromonas septicemia (MAS), caused by new virulent Aeromonas hydrophila (vAh) strains, has been one of the major diseases in channel catfish in recent years. Previous studies showed that channel catfish developed immunity against vAh infection after immunization with the pathogen's extracellular proteins (ECP). To understand the mechanisms associated with the immunity, anti-ECP fish serum (antiserum) was analyzed in this study. Our results revealed that the antiserum elicited agglutination of both ECP and cells of vAh. Five fish proteins were identified in ECP agglutinants, including two innate immunity associated proteins (serotransferrin and rhamnose-binding lectin), two immunoglobulin M (IgM) molecules (IgM heavy chain and light chain) and a constitutively-produced protein (warm temperature acclimation protein). More than 68 vAh proteins in ECP were recognized and caused to aggregate by IgM in the antiserum. IgM was isolated from vAh cell agglutinants and the native IgM was shown to form a tetramer that was responsible for bacterial agglutination. Immunoblotting analysis indicated that the isolated native IgM was able to recognize some proteins in ECP, such as aerolysin and hemolysin (in the form of a high molecular weight heterologous polymer). Gene expression analysis by quantitative PCR showed that fish immunized with vAh ECP had more transcripts of genes coding for IgM, serotransferrin and rhamnose binding lectin than mock-immunized fish. Both innate and antibody-mediated immune responses in serum and expressed genes contributed to fish immunity upon immunization with ECP. Results of this study shed light on the versatility of vAh antigens and catfish IgM, which would help identify specific antigens for vaccine development and antigen specific antibodies in catfish.


Assuntos
Aeromonas hydrophila/imunologia , Proteínas de Bactérias/imunologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Ictaluridae/imunologia , Testes de Aglutinação/veterinária , Animais , Doenças dos Peixes/imunologia , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas/imunologia , Soros Imunes/imunologia , Imunidade Inata , Imunização/veterinária , Imunoglobulina M
15.
Sci Rep ; 8(1): 9306, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915326

RESUMO

Currently, there is only limited knowledge on the protein types and structures of the cottonseed proteins. In this work, water-soluble cottonseed proteins (CSPw) and alkali-soluble cottonseed proteins (CSPa) were sequentially extracted from defatted cottonseed meal. Proteins of the two fractions were separated by 4-20% gradient polyacrylamide gel electrophoresis (SDS-PAGE); There were 7 and 12 polypeptide bands on SDS-PAGE of CSPa and CSPw, respectively. These individual bands were then excised from the gel and subjected to mass spectrometric analysis. There were total 70 polypeptides identified from the proteins of the two cottonseed preparations, with molecular weights ranging from 10 to 381 kDa. While many proteins or their fragments were found in multiple bands, 18 proteins appeared only in one SDS-PAGE band (6 in CSPa, 12 in CSPw). Putative functions of these proteins include storage, transcription/translation, synthesis, energy metabolism, antimicrobial activity, and embryogenesis. Among the most abundant are legumin A (58 kDa), legumin B (59 kDa), vicilin C72 (70 kDa), vicilin GC72-A (71 kDa), and vicilin-like antimicrobial peptides (62 kDa). This work enriched the fundamental knowledge on cottonseed protein composition, and would help in better understanding of the functional and physicochemical properties of cottonseed protein and for enhancing its biotechnological utilization.


Assuntos
Álcalis/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Água/química , Ontologia Genética , Peptídeos/metabolismo , Proteômica , Solubilidade
16.
Fish Shellfish Immunol ; 66: 540-547, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28546022

RESUMO

Ichthyophthiriasis caused by Ichthyophthirius multifiliis (Ich) has a worldwide distribution and affects most freshwater fishes. Fish surviving natural infection and/or immunized with Ich develop strong innate and adaptive immune responses. However, there is a lack of the knowledge regarding immune gene expression patterns in systemic and mucosal immune tissues, and how immune genes interact and lead to innate and adaptive immune protection against Ich infection in fish. The objective of this study was to investigate the expression of innate and adaptive immune-related genes in systemic (liver, spleen) and mucosal (gill, intestine) tissues of channel catfish over time following vaccination with live Ich theronts. The vaccinated fish showed significantly higher antibody titers and survival (95%) than those of mock immunized fish. Expression of IgM and IgD heavy chain genes exhibited a rapid increase from 4 h (h4) to 2 days (d2) post-vaccination in systemic immune tissues. Immune cell receptor genes (CD4, CD8-α, MHC I, MHC II ß, TcR-α, and TcR-ß) were more highly upregulated and remained upregulated for longer duration in systemic tissues than in mucosal tissues of the vaccinated fish. The cytokine genes IL-1ßa and IFN-γ were rapidly upregulated in both systemic and mucosal tissues of vaccinated fish, with peak expression from h4 to d1 post-vaccination. Toll-like receptor genes TLR-1 and TLR-9 showed relatively stable upregulation in the gill of immunized fish following vaccination. Results of this study revealed the molecular immune responses in mucosal and systemic tissues of vaccinated fish and demonstrated that Ich vaccination resulted in innate and adaptive immune responses against Ich infection.


Assuntos
Imunidade Adaptativa , Infecções por Cilióforos/veterinária , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica/imunologia , Ictaluridae , Imunidade Inata , Animais , Infecções por Cilióforos/imunologia , Infecções por Cilióforos/parasitologia , Doenças dos Peixes/parasitologia , Proteínas de Peixes/metabolismo , Hymenostomatida/imunologia , Especificidade de Órgãos , Vacinação/veterinária
17.
Arch Microbiol ; 199(4): 573-579, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28032191

RESUMO

Virulent Aeromonas hydrophila (vAh) is one of the most important bacterial pathogens that causes persistent outbreaks of motile Aeromonas septicemia in warm-water fishes. The survivability of this pathogen in aquatic environments is of great concern. The aim of this study was to determine the capability of the vAh strain ML10-51K to degrade and utilize chitin. Genome-wide analysis revealed that ML10-51K encodes a suite of proteins for chitin metabolism. Assays in vitro showed that four chitinases, one chitobiase and one chitin-binding protein were secreted extracellularly and participated in chitin degradation. ML10-51K was shown to be able to use not only N-acetylglucosamine and colloidal chitin but also chitin flakes as sole carbon sources for growth. This study indicates that ML10-51K is a highly chitinolytic bacterium and suggests that the capability of effective chitin utilization could enable the bacterium to attain high densities when abundant chitin is available in aquatic niches.


Assuntos
Aeromonas hydrophila/enzimologia , Quitina/metabolismo , Acetilglucosamina/metabolismo , Aeromonas hydrophila/genética , Aeromonas hydrophila/patogenicidade , Animais , Quitinases/metabolismo
18.
Genome Announc ; 4(6)2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27856595

RESUMO

Pseudomonas mosselii Gil3 was isolated from a catfish that survived from lethal challenge with hypervirulent Aeromonas hydrophila (vAh). When assayed in vitro, the bacterium showed antagonism against vAh. Sequence analysis revealed that the genome of P. mosselii Gil3 encodes numerous aromatic metabolism pathways and proteins for biosynthesis of antimicrobial compounds.

19.
Front Microbiol ; 7: 1615, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803692

RESUMO

Lineages of hypervirulent Aeromonas hydrophila (vAh) are the cause of persistent outbreaks of motile Aeromonas septicemia in warm-water fishes worldwide. Over the last decade, this virulent lineage of A. hydrophila has resulted in annual losses of millions of tons of farmed carp and catfish in the People's Republic of China and the United States (US). Multiple lines of evidence indicate US catfish and Asian carp isolates of A. hydrophila affiliated with sequence type 251 (ST251) share a recent common ancestor. To address the genomic context for the putative intercontinental transfer and subsequent geographic spread of this pathogen, we conducted a core genome phylogenetic analysis on 61 Aeromonas spp. genomes, of which 40 were affiliated with A. hydrophila, with 26 identified as epidemic strains. Phylogenetic analyses indicate all ST251 strains form a coherent lineage affiliated with A. hydrophila. Within this lineage, conserved genetic loci unique to A. hydrophila were identified, with some genes present in consistently higher copy numbers than in non-epidemic A. hydrophila isolates. In addition, results from analyses of representative ST251 isolates support the conclusion that multiple lineages are present within US vAh isolated from Mississippi, whereas vAh isolated from Alabama appear clonal. This is the first report of genomic heterogeneity within US vAh isolates, with some Mississippi isolates showing closer affiliation with the Asian grass carp isolate ZC1 than other vAh isolated in the US. To evaluate the biological significance of the identified heterogeneity, comparative disease challenges were conducted with representatives of different vAh genotypes. These studies revealed that isolate ZC1 yielded significantly lower mortality in channel catfish, relative to Alabama and Mississippi vAh isolates. Like other Asian vAh isolates, the ZC1 lineage contains all core genes for a complete type VI secretion system (T6SS). In contrast, more virulent US isolates retain only remnants of the T6SS (clpB, hcp, vgrG, and vasH) which may have functional implications. Collectively, these results characterize a hypervirulent A. hydrophila pathotype that affects farmed fish on multiple continents.

20.
FEMS Microbiol Lett ; 363(9)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27044300

RESUMO

The aim of this study was to understand the pathogenesis of motile aeromonas septicemia caused by an emergent, high virulent Aeromonas hydrophila (vAh) in channel catfish, Ictalurus punctatus Adipose fin clipped catfish were challenged with vAh using a waterborne challenge method, and the distribution of vAh over a time course was detected and quantified using real-time polymerase chain reaction. The results showed that 77.8% of fish died within 48 h post challenge with mean day to death of 1.5 days. At 2 h post challenge, vAh (inferred from genomic DNA copies or genome equivalents) was detected in all external and internal tissues sampled. Gill had the highest vAh cells at 1 h post challenge. Spleen harbored the most vAh cells among internal organs at 4 h post challenge. The tissues/organs with most vAh cells detected at 8 h post challenge were adipose fin, blood, intestine, kidney and skin, while liver showed the highest vAh cells at 24 h post challenge. These results suggest that vAh was able to rapidly proliferate and spread, following wound infection, through the fish blood circulation system and cause mortality within 8-24 h.


Assuntos
Aeromonas hydrophila/isolamento & purificação , Aeromonas hydrophila/patogenicidade , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Ictaluridae/microbiologia , Aeromonas hydrophila/genética , Nadadeiras de Animais/microbiologia , Animais , Bacteriemia/microbiologia , Bacteriemia/veterinária , Brânquias/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Baço/microbiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...