Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1282469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022651

RESUMO

Background: HBV coinfection is frequent in people living with HIV (PLWH) and is the leading cause of hepatocellular carcinoma (HCC). While risk prediction methods for HCC in patients with HBV monoinfection have been proposed, suitable biomarkers for early diagnosis of HCC in PLWH remain uncommon. Methods: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to examine serum protein alterations in HCC and non-HCC patients with HIV and HBV co-infection. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO) enrichment analysis were performed on the differentially expressed proteins (DEPs). The risk prediction model was created using five-cross-validation and LASSO regression to filter core DEPs. Results: A total of 124 DEPs were discovered, with 95 proteins up-regulated and 29 proteins down-regulated. Extracellular matrix organization and membrane component were the DEPs that were most abundant in the categories of biological processes (BP) and cellular components (CC). Proteoglycans in cancer were one of the top three DEPs primarily enriched in the KEGG pathway, and 60.0% of DEPs were linked to various neoplasms in terms of DO enrichment. Eleven proteins, including GAPR1, PLTP, CLASP2, IGHV1-69D, IGLV5-45, A2M, VNN1, KLK11, ANPEP, DPP4 and HYI, were chosen as the core DEPs, and a nomogram was created to predict HCC risk. Conclusion: In HIV/HBV patients with HCC, several differential proteins can be detected in plasma by mass spectrometry, which can be used as screening markers for early diagnosis and risk prediction of HCC. Monitoring protease expression differences can help in the diagnosis and prognosis of HCC.


Assuntos
Carcinoma Hepatocelular , Coinfecção , Infecções por HIV , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Coinfecção/complicações , Vírus da Hepatite B , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Infecções por HIV/complicações , Biomarcadores , Proteínas Sanguíneas
2.
J Leukoc Biol ; 113(6): 567-576, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976041

RESUMO

TLR5 agonist flagellin is an effective mucosal adjuvant via intranasal administration. Previous studies demonstrated that the mucosal adjuvanticity of flagellin depends on TLR5 signaling of airway epithelial cells. Since dendritic cells play a central role in antigen sensitization and the initiation of primary immune responses, we wondered how dendritic cells were modulated by the intranasally administrated flagellin. In this study, a mouse model of intranasal immunization with ovalbumin, a model antigen, in the presence or absence of flagellin was utilized. We found that nasal administration of flagellin enhanced the coadministered antigen-specific antibody responses and T-cell clonal expansion in a TLR5-dependent manner. However, neither the entering of flagellin to nasal lamina propria nor the uptake of coadministered antigen by nasal resident dendritic cells was associated with TLR5 signaling. In contrast, migration of antigen-loaded dendritic cells from the nasal cavity to the cervical lymph nodes and activation of dendritic cells in the cervical lymph nodes were both enhanced through TLR5 signaling. Furthermore, for the dendritic cells, flagellin enhanced the expression of CCR7, which was pivotal for dendritic cells in the priming site migrating to draining lymph nodes. Interestingly, the migration, activation, and chemokine receptor expression levels of antigen-loaded dendritic cells were all significantly higher than that of bystander dendritic cells. In conclusion, intranasally administrated flagellin enhanced TLR5-dependent antigen-loaded dendritic cells' migration and activation but not antigen uptake.


Assuntos
Flagelina , Receptor 5 Toll-Like , Camundongos , Animais , Flagelina/farmacologia , Flagelina/metabolismo , Receptor 5 Toll-Like/metabolismo , Células Dendríticas , Sistema Respiratório , Imunização
3.
Front Immunol ; 14: 1089379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845097

RESUMO

Background: To analyze the changing characteristics of continuous monitoring of refined lymphocyte subsets in people living with HIV/AIDS (PLWHA) during ART period. Methods: Refined lymphocyte subsets was continuously monitored using flow cytometry for 173 PLWHA, who were hospitalized in Zhongnan Hospital of Wuhan University from August 17, 2021 to September 14, 2022. The effect of ART status and duration of ART on changes of refined lymphocyte subsets were compared in different groups. Then, the levels of refined lymphocyte subsets in PLWHA treated for more than 10 years were compared to those of 1086 healthy individuals. Results: In addition to conventional CD4+ T lymphocytes and CD4+/CD8+ ratio, gradually increasing in numbers of CD3+CD4+CD45RO cells, CD3+CD4+CD45RA cells, CD45RA+CD3+CD4+CD25+CD127low and CD45RO+CD3+CD4+CD25+CD127low cells were found with the increase of ART duration. The number of CD4+CD28+ cells and CD8+CD28+ cells were 174/ul and 233/ul at 6 months post-ART, which gradually increased to 616/ul and 461/ul after ART initiation more than 10 years. Moreover, in ART ≤ 6 months, 6 months-3years, 3-10 years and >10 years groups, the percentage of CD3+CD8+HLA-DR+/CD8 were 79.66%, 69.73%, 60.19% and 57.90%, respectively, and the differences between groups showed statistical significance (F=5.727, P=0.001). For those PLWHA with ART more than 10 years, the levels of CD4+ T lymphocytes, CD3+CD4+CD45RO cells, CD3+CD4+CD45RA cells, CD4+CD28+ cells and CD8+CD28+ cells can increase to levels similar to those of healthy control. However, for those PLWHA with ART more than 10 years, CD4+/CD8+ ratio was 0.86 ± 0.47, which was lower than that of healthy control (0.86 ± 0.47 vs 1.32 ± 0.59, t=3.611, P=0.003); absolute counts and percentage of CD3+CD8+HLA-DR+ cells were 547/ul and 57.90%, which were higher than those of healthy control(547/ul vs 135/ul, t=3.612, P=0.003; 57.90% vs 22.38%, t=6.959, P<0.001). Conclusion: Persistent ART can gradually improve the immune status of PLWHA, which is manifested in the increase of lymphocytes, function recovery of lymphocytes and reduction of aberrant activation status of the immune system. After 10 years of standardized ART, most lymphocytes could return to levels of healthy persons, although it may take longer to complete recovery for CD4+/CD8+ ratio and CD3+CD8+HLA-DR+ cells.


Assuntos
Antígenos CD28 , Infecções por HIV , Humanos , Linfócitos T , Subpopulações de Linfócitos , Infecções por HIV/tratamento farmacológico , Contagem de Linfócitos , Antígenos HLA-DR , Antígenos Comuns de Leucócito
4.
Cell Mol Life Sci ; 79(11): 547, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224474

RESUMO

Toll-like receptors (TLRs) comprise a class of highly conserved molecules that recognize pathogen-associated molecular patterns and play a vital role in host defense against multiple viral infectious diseases. Although TLRs are highly expressed on innate immune cells and play indirect roles in regulating antiviral adaptive immune responses, intrinsic expression of TLRs in adaptive immune cells, including T cells and B cells, cannot be ignored. TLRs expressed in CD4 + and CD8 + T cells play roles in enhancing TCR signal-induced T-cell activation, proliferation, function, and survival, serving as costimulatory molecules. Gene knockout of TLR signaling molecules has been shown to diminish antiviral adaptive immune responses and affect viral clearance in multiple viral infectious animal models. These results have highlighted the critical role of TLRs in the long-term immunological control of viral infection. This review summarizes the expression and function of TLR signaling pathways in T and B cells, focusing on the in vitro and vivo mechanisms and effects of intrinsic TLR signaling in regulating T- and B-cell responses during viral infection. The potential clinical use of TLR-based immune regulatory drugs for viral infectious diseases is also explored.


Assuntos
Doenças Transmissíveis , Moléculas com Motivos Associados a Patógenos , Imunidade Adaptativa , Animais , Antivirais/farmacologia , Imunidade Inata , Receptores de Antígenos de Linfócitos T , Receptores Toll-Like
5.
PLoS Negl Trop Dis ; 16(1): e0010149, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35100271

RESUMO

Chikungunya virus (CHIKV) is an emerging mosquito-transmitted alphavirus that leads to acute fever and chronic debilitating polyarthralgia. To date, the mechanism underlying chronic recurrent arthralgia is unknown. In the present study, newborn wild-type C57BL/6 mice were infected with CHIKV, and the virological and pathological features of CHIKV infection were analyzed over a period of 50 days. Acute viral infection was readily established by footpad inoculation of CHIKV at doses ranging from 10 plaque forming unit (PFU) to 106 PFU, during which inoculation dose-dependent viral RNA and skeletal muscle damage were detected in the foot tissues. However, persistent CHIKV was observed only when the mice were infected with a high dose of 106 PFU of CHIKV, in which low copy numbers (103-104) of viral positive strand RNA were continuously detectable in the feet from 29 to 50 dpi, along with a low level and progressive reduction in virus-specific CD8+ T cell responses. In contrast, viral negative strand RNA was detected at 50 dpi but not at 29 dpi and was accompanied by significant local skeletal muscle damage at 50 dpi when mild synovial hyperplasia appeared in the foot joints, although the damage was briefly repaired at 29 dpi. These results demonstrated that a high viral inoculation dose leads to viral persistence and progression to chronic tissue damage after recovery from acute infection. Taken together, these results provide a useful tool for elucidating the pathogenesis of persistent CHIKV infection and viral relapse-associated chronic arthritis.


Assuntos
Artralgia/virologia , Artrite/virologia , Febre de Chikungunya/patologia , Vírus Chikungunya/imunologia , Miosite/virologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Artralgia/patologia , Artrite/patologia , Linfócitos T CD8-Positivos/imunologia , Vírus Chikungunya/genética , Proteínas de Ligação a DNA/imunologia , Modelos Animais de Doenças , Articulações/patologia , Articulações/virologia , Camundongos , Camundongos Endogâmicos C57BL , Miosite/patologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Carga Viral
6.
Cell Rep ; 36(3): 109401, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289371

RESUMO

Respiratory syncytial virus (RSV) is a major cause of serious acute lower respiratory tract infection in infants and the elderly. The lack of a licensed RSV vaccine calls for the development of vaccines with other targets and vaccination strategies. Here, we construct a recombinant protein, designated P-KFD1, comprising RSV phosphoprotein (P) and the E.-coli-K12-strain-derived flagellin variant KFD1. Intranasal immunization with P-KFD1 inhibits RSV replication in the upper and lower respiratory tract and protects mice against lung disease without vaccine-enhanced disease (VED). The P-specific CD4+ T cells provoked by P-KFD1 intranasal (i.n.) immunization either reside in or migrate to the respiratory tract and mediate protection against RSV infection. Single-cell RNA sequencing (scRNA-seq) and carboxyfluorescein succinimidyl ester (CFSE)-labeled cell transfer further characterize the Th1 and Th17 responses induced by P-KFD1. Finally, we find that anti-viral protection depends on either interferon-γ (IFN-γ) or interleukin-17A (IL-17A). Collectively, P-KFD1 is a promising safe and effective mucosal vaccine candidate for the prevention of RSV infection.


Assuntos
Flagelina/genética , Imunidade nas Mucosas/imunologia , Mutação/genética , Fosfoproteínas/metabolismo , Vacinas contra Vírus Sincicial Respiratório/efeitos adversos , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Células Clonais , Citotoxicidade Imunológica/genética , Feminino , Humanos , Imunidade , Imunização , Interferon gama/metabolismo , Interleucina-17/metabolismo , Pneumopatias/patologia , Pneumopatias/virologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Fosforilação , Proteínas Recombinantes/imunologia , Análise de Célula Única , Células Th1/imunologia , Células Th17/imunologia
7.
J Mol Cell Biol ; 13(3): 197-209, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33751111

RESUMO

Although millions of patients have clinically recovered from COVID-19, little is known about the immune status of lymphocytes in these individuals. In this study, the peripheral blood mononuclear cells of a clinically recovered (CR) cohort were comparatively analyzed with those of an age- and sex-matched healthy donor cohort. We found that CD8+ T cells in the CR cohort had higher numbers of effector T cells and effector memory T cells but lower Tc1 (IFN-γ+), Tc2 (IL-4+), and Tc17 (IL-17A+) cell frequencies. The CD4+ T cells of the CR cohort were decreased in frequency, especially the central memory T cell subset. Moreover, CD4+ T cells in the CR cohort showed lower programmed cell death protein 1 (PD-1) expression and had lower frequencies of Th1 (IFN-γ+), Th2 (IL-4+), Th17 (IL-17A+), and circulating follicular helper T (CXCR5+PD-1+) cells. Accordingly, the proportion of isotype-switched memory B cells (IgM-CD20hi) among B cells in the CR cohort showed a significantly lower proportion, although the level of the activation marker CD71 was elevated. For CD3-HLA-DR- lymphocytes in the CR cohort, in addition to lower levels of IFN-γ, granzyme B and T-bet, the correlation between T-bet and IFN-γ was not observed. Additionally, by taking into account the number of days after discharge, all the phenotypes associated with reduced function did not show a tendency toward recovery within 4‒11 weeks. The remarkable phenotypic alterations in lymphocytes in the CR cohort suggest that  severe acute respiratory syndrome coronavirus 2 infection profoundly affects lymphocytes and potentially results in dysfunction even after clinical recovery.


Assuntos
Linfócitos T CD8-Positivos/virologia , COVID-19/sangue , Leucócitos Mononucleares/virologia , SARS-CoV-2/patogenicidade , Adulto , Idoso , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , COVID-19/epidemiologia , COVID-19/patologia , COVID-19/virologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Granzimas/genética , Humanos , Interferon gama/genética , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Proteínas com Domínio T/genética , Células Th1/imunologia , Células Th1/virologia , Células Th17/imunologia , Células Th17/virologia , Células Th2/imunologia , Células Th2/virologia
8.
Clin Transl Immunology ; 10(3): e1259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33728049

RESUMO

OBJECTIVE: SARS-CoV-2 has caused a worldwide pandemic of COVID-19. The existence of prolonged SARS-CoV-2 positivity (PP) has further increased the burden on the health system. Since T cells are vital for viral control, we aimed to evaluate the characteristics of T-cell responses associated with PP. METHODS: We established a PP cohort and two age- and sex-matched control cohorts: a regular clinical recovery (CR) cohort and a healthy donor (HD) cohort. The mean time for RNA negativity conversion in the PP cohort was markedly longer than that in the CR cohort (66.2 vs 25.3 days), while the time from illness onset to sampling was not significantly different. T-cell responses in the PP cohort were assayed, analysed and compared with those in the CR and HD cohorts by flow cytometry and ELISpot analysis of peripheral blood mononuclear cells. RESULTS: Compared with the CR cohort, the proliferation, activation and functional potential of CD8+ and CD4+ T cells in the PP cohort were not significantly different. However, the frequencies and counts of Teff and Tem in CD8+ but not in CD4+ T cells of the PP cohort were prominently lower. Moreover, a weaker SARS-CoV-2 N protein-specific IFN-γ+ T-cell response and a higher frequency of Tregs were detected in the PP cohort. CONCLUSION: Suppressed CD8+ T-cell differentiation is associated with PP and may be an indicator for the prediction of prolonged SARS-CoV-2 positivity in COVID-19 patients. The association between suppressed CD8+ T-cell differentiation and elevated Tregs warrants studies in the future.

9.
Immunology ; 161(4): 325-344, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32852795

RESUMO

The liver is an immune-privileged organ with a tolerogenic environment for maintaining liver homeostasis. This hepatic tolerance limits the intrahepatic CD8+ T-cell response for eliminating infections. The tolerant microenvironment in the liver is orchestrated by liver-specific immunoregulatory cells that can be functionally regulated by pathogen-associated molecular patterns (PAMPs). Here, we report that flagellin, a key PAMP of gut bacteria, modulates the intrahepatic CD8+ T-cell response by activating the TLR5 signalling pathway of hepatocytes. We found that mice treated with Salmonella-derived recombinant flagellin (SF) by hydrodynamic injection had a significantly elevated IFN-γ production by the intrahepatic lymphocytes in 7 days after injection. This was correlated with a reduced immune suppressive effect of primary mouse hepatocytes (PMHs) in comparison with that of PMHs from mock-injected control mice. In vitro co-culture of SF-treated PMHs with splenocytes revealed that hepatocyte-induced immune suppression is alleviated through activation of the TLR5 but not the NLRC4 signalling pathway, leading to improved activation and function of CD8+ T cells during anti-CD3 stimulation or antigen-specific activation. In an acute HBV replication mouse model established by co-administration of SF together with an HBV-replicating plasmid by hydrodynamic injection, SF significantly enhanced the intrahepatic HBV-specific CD8+ T-cell response against HBV surface antigen. Our results clearly showed that flagellin plays a role in modulating the intrahepatic CD8+ T-cell response by activating the TLR5 pathway in PMHs, which suggests a potential role for gut bacteria in regulating liver immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Hepatite B/fisiologia , Hepatite B/imunologia , Hepatócitos/fisiologia , Fígado/imunologia , Salmonella/metabolismo , Receptor 5 Toll-Like/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Células Cultivadas , Flagelina/metabolismo , Privilégio Imunológico , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Receptor 5 Toll-Like/genética
11.
Acta Biomater ; 110: 254-265, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32344172

RESUMO

Calcium phosphate nanoparticles were loaded with plasmid DNA and toll-like receptor ligands (TLR), i.e. CpG or flagellin, to activate antigen-presenting cells (APCs) like dendritic cells (DCs). The functionalized nanoparticles were studied in vitro on HeLa, C2C12 and BHK-21 cell lines, focusing on the expression of two specific proteins. EGFP-DNA, encoding for enhanced green fluorescent protein (EGFP), was used as a model plasmid to optimize the transfection efficiency in vitro by fluorescence microscopy and flow cytometry. Calcium phosphate nanoparticles loaded with TLR ligands and plasmid DNA encoding for the hepatitis B virus surface antigen (pHBsAg) were evaluated by in vitro and in vivo immunization experiments to identify a possible candidate for a prophylactic hepatitis B virus (HBV) vaccine. The nanoparticles induced a strong expression of HBsAg in the three cell lines. In splenocytes, the expression of the co-stimulatory molecules CD80 and CD86 was enhanced. After intramuscular injection in mice, the nanoparticles induced the expression of HBsAg, the antigen-specific T cell response, and the antigen-specific antibody response (IgG1). STATEMENT OF SIGNIFICANCE: Hepatitis B is one of the most frequent viral infections worldwide. For preventive immunization, nanoparticles can be used which carry both an adjuvant (a stimulatory molecule) and DNA encoding for a viral antigen. After administration of such nanoparticles to cells, they are taken up by cells where the DNA is transcribed into the viral antigen (a protein). This viral antigen is inducing a virus-specific immune response. This was shown both by in vitro cell culture as well as by an extensive in vivo study in mice.


Assuntos
Vírus da Hepatite B , Nanopartículas , Animais , Fosfatos de Cálcio , Antígenos de Superfície da Hepatite B , Imunização , Camundongos , Camundongos Endogâmicos BALB C
12.
ACS Infect Dis ; 6(5): 844-856, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32119519

RESUMO

Immunoglobulin A (IgA) can inhibit intracellular viral replication during its transport across the epithelial cells. We find a monoclonal IgA antibody 7F1-IgA against the N-terminal moiety of the phosphoprotein (PNT) of measles virus (MV), which inhibits the intracellular replication of MV in Caco-2 cells but not in interferon-deficient Vero-pIgR cells. Transcytosis of 7F1-IgA across the MV-infected Caco-2 cells enhances the production of interferon-ß (IFN-ß) and the expression of IFN-stimulated genes, rendering Caco-2 cells with higher antiviral immunity. 7F1-IgA specifically interacts with MV phosphoprotein inside the MV-infected Caco-2 cell and prevents MV phosphoprotein from inhibiting the phosphorylation of JAK1 and STAT1. The intraepithelial interaction between 7F1-IgA and the viral phosphoprotein results in an earlier and stronger phosphorylation of JAK1 and STAT1 and, consequently, a more efficient nuclear translocation of STAT1 for the activation of the type I interferon pathway. Thus, IgA against phosphoprotein prevents a virus from evading type I IFN signaling and confers host epithelial cells efficient innate antiviral immunity, which potentiates a new antiviral target and an antiviral strategy.


Assuntos
Imunoglobulina A , Interferon beta/imunologia , Vírus do Sarampo , Fosfoproteínas/imunologia , Proteínas Virais/imunologia , Animais , Células CACO-2 , Chlorocebus aethiops , Humanos , Imunidade Inata , Janus Quinase 1 , Fator de Transcrição STAT1 , Células Vero
13.
Front Immunol ; 10: 2191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572396

RESUMO

The activation of TLR7 signaling in T cells accelerates antigen-specific responses. Such responses play an essential role in eliminating viral infections and can be anti-tumorigenic. However, the underlying mechanisms of how TLR7 can promote the optimal function of CD8+ T cells remain unclear. To investigate how TLR signaling directly contributes to CD8+ T cell functions, we examine the activation of cellular TLR7-related pathways and functional and metabolic alterations in TLR7-stimulated T cells during T cell receptor (TCR) signaling. In the present study, we investigated the activation of CD8+ T cells in response to direct stimulation by TLR7 ligands. TLR7 stimulation could promote the effector functions of purified CD8+ T cells in vitro. The TLR7-induced activation of CD8+ T cells occurs if CD8+ T cells were primed by αCD3 activation and increasingly expressed TLR7. MyD88 and AKT-mTOR signaling plays a critical role in TLR7-induced T cell activation. In addition to the upregulation of immune-related genes, metabolic alterations in CD8+ T cells, including the upregulation of glucose uptake and glycolysis, occurred by TLR7 stimulation. Glycolysis was found to be regulated by the AKT-mTOR pathway and a downstream transcription factor IRF4. Blocking glycolysis by either direct glucose deprivation or modulating the mTOR pathway and IRF4 expression was found to impair T cell activation and functions. Taken together, the activation of TLR7 signaling promotes the effector functions of CD8+ T cells by enhancing cellular glycolysis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Glicólise , Glicoproteínas de Membrana/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Células Cultivadas , Feminino , Imidazóis/farmacologia , Fatores Reguladores de Interferon/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/imunologia , Serina-Treonina Quinases TOR/imunologia
14.
Front Immunol ; 10: 2308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608073

RESUMO

The central role of the cellular immune response in the control and clearance of the hepatitis B virus (HBV) infection has been well-established. The contribution of humoral immunity, including B cell and antibody responses against HBV, has been investigated for a long time but has attracted increasing attention again in recent years. The anti-HBs antibody was first recognized as a marker of protective immunity after the acute resolution of the HBV infection (or vaccination) and is now defined as a biomarker for the functional cure of chronic hepatitis B (CHB). In this way, therapies targeting HBV-specific B cells and the induction of an anti-HBs antibody response are essential elements of a rational strategy to terminate chronic HBV infection. However, a high load of HBsAg in the blood, which has been proposed to induce antigen-specific immune tolerance, represents a major obstacle to curing CHB. Long-term antiviral treatment by nucleoside analogs, by targeting viral translation by siRNA, by inhibiting HBsAg release via nucleic acid polymers, or by neutralizing HBsAg via specific antibodies could potentially reduce the HBsAg load in CHB patients. A combined strategy including a reduction of the HBsAg load via the above treatments and the therapeutic targeting of B cells by vaccination may induce the appearance of anti-HBs antibodies and lead to a functional cure of CHB.


Assuntos
Linfócitos B/imunologia , Anticorpos Anti-Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Imunidade Celular/imunologia , Antivirais/uso terapêutico , Linfócitos B/virologia , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/prevenção & controle , Hepatite B Crônica/virologia , Humanos , Tolerância Imunológica/imunologia , Imunidade Humoral/imunologia , Vacinação/métodos
15.
J Immunol ; 203(11): 2872-2886, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31636238

RESUMO

TLR2 serves as a costimulatory molecule on activated T cells. However, it is unknown how the functionality and antiviral activity of CD8+ T cells are modulated by direct TLR2 signaling. In this study, we looked at the TLR2-mediated enhancement of TCR-driven CD8+ T cell activation in vitro and in woodchuck hepatitis virus transgenic mice. In vitro stimulation of CD8+ T cells purified from C57BL/6 mice showed that TLR2 agonist Pam3CSK4 directly enhanced the TCR-dependent CD8+ T cell activation. Transcriptome analysis revealed that TLR2 signaling increased expression of bioenergy metabolism-related genes in CD8+ T cells, such as IRF4, leading to improved glycolysis and glutaminolysis. This was associated with the upregulation of genes related to immune regulation and functions such as T-bet and IFN-γ. Glycolysis and glutaminolysis were in turn essential for the TLR2-mediated enhancement of T cell activation. Administration of TLR2 agonist Pam3CSK4 promoted the expansion and functionality of vaccine-primed, Ag-specific CD8+ T cells in both wild type and transgenic mice and improved viral suppression. Thus, TLR2 could promote CD8+ T cell immunity through regulating the energy metabolism.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Lipopeptídeos/administração & dosagem , Lipopeptídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/imunologia
17.
Antiviral Res ; 161: 144-153, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30500403

RESUMO

Secretory IgA (SIgA) antibody is unique for its capability to transit through epithelial cells by transcytosis and thus has opportunities and probabilities to interact with all viral components during viral replication which may result in the inhibition of viral replication intracellularly. Here, we report a novel IgA mAb 1D11-IgA against phosphoprotein (P) of measles virus (MV), which is able to interact specifically with P in MV infected Vero-pIgR cells grown in a two-chamber transwell system. The binding epitope of 1D11-IgA involves a key residue proline 23 in P protein, which is among the α-molecular recognition element (α-MoRE) of P and critical for N0-P complex. The antibody appears to block P to interact with N in P-N complex and thus may inhibit the function of viral RdRp complex, which results in decreased synthesis of viral genome RNA and mRNA. Our data together demonstrate that IgA is able to interact with viral phosphoprotein intraepithelial cells and neutralize viral replication by interrupting formation of P-N complex and function of RdRp. The findings highlight that IgA has a unique anti-viral activity by targeting viral conserved components critical for viral replication, which serves as a proof-of-concept assessment of the druggability of mononegavirales P-N interfaces.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/farmacologia , Imunoglobulina A/farmacologia , Vírus do Sarampo/efeitos dos fármacos , Fosfoproteínas/imunologia , Proteínas Virais/imunologia , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Citoplasma/virologia , Genoma Viral , Masculino , Vírus do Sarampo/fisiologia , Camundongos , Testes de Neutralização , Transcitose
18.
Front Immunol ; 9: 1495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30008718

RESUMO

Toll-like receptors (TLRs) play a crucial role in activation of innate immunity, which is essential for inducing effective adaptive immune responses. Our previous studies have shown that toll-like receptor 2 (TLR2) is required to induce effective virus-specific T-cell responses against hepatitis B virus (HBV) in vivo. However, the contribution of TLR2 activation to adaptive immunity and HBV clearance remains to be clarified. In this study, we explored the hydrodynamic injection (HI) mouse models for HBV infection and examined how the TLR2 agonist Pam3CSK (P3C) influences HBV control and modulates HBV-specific T-cell response if applied in vivo. We found that TLR2 activation by P3C injection leads to the rapid but transient production of serum proinflammatory factors interleukin-6 and tumor necrosis factor-α and activation of CD8+ T cells in vivo. Then, the anti-HBV effect and HBV-specific T-cell immunity were investigated by TLR2 activation in the mouse models for persistent or acute HBV infections using HBV plasmids pAAV-HBV1.2 and pSM2, respectively. Both P3C application at early stage and pre-activation promoted HBV clearance, while only TLR2 pre-activation enhanced HBV-specific T-cell response in the liver. In the mouse model for acute HBV infection, P3C application had no significant effect on HBV clearance though P3C significantly enhanced the HBV-specific T-cell response. Collectively, TLR2 pre-activation enhances HBV-specific T-cell responses and accelerates HBV clearance in HI mouse models. Thus, the modulation of host immune status by TLR2 agonists may be explored for immunotherapeutic strategies to control HBV infection.

19.
Cell Discov ; 4: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760946

RESUMO

The NLR apoptosis inhibitory proteins (NAIPs) function as specific cytosolic receptors for bacterial ligands to form the NAIP-NLRC4 inflammasome for anti-bacterial defenses. In mice, NAIP5/6 and NAIP2 recognize bacteria flagellin and the rod protein of the type III secretion system (T3SS), respectively. However, molecular mechanism for specific ligand pattern-recognition by the NAIPs is largely unknown. Here, through extensive domain swapping and truncation analyses, three structural domains, the pre-BIR, BIR1, and HD1, in NAIP2 and NAIP5 are identified, that are important for specific recognition of their respective ligand(s). The three domains are sufficient to confer the ligand specificity for NAIP2. Asp-18, Arg-108, and Arg-667, respectively, in the pre-BIR, BIR1 and HD1 of NAIP2 are further identified, each of which is essential for efficient binding to the rod protein. To our surprise, we find that the C-terminal leucine-rich repeat domain is dispensable for NAIP2 recognition of the T3SS rod protein, but is required for NAIP5 binding to flagellin. At the ligand side, we discover that the C-terminal 35 residues in flagellin are crucial for binding to NAIP5. Among the 35 residues, three critical residues are identified, which determine flagellin recognition by NAIP5 and subsequent inflammasome activation. The differences in the three amino-acid residues among flagellins from various pathogenic and commensal bacterial species correlate well with whether they are susceptible to NAIP5-mediated immune detection. Taken together, our studies identify critical sequence and amino-acid determinants in both NAIP receptors and the bacterial ligand flagellin that are important for the specificity of the pattern-recognition.

20.
Antiviral Res ; 153: 49-59, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29550516

RESUMO

The development of an effective HIV-1 vaccine is still a global priority. In recent years, vaccinia virus (VV) has been widely used as an HIV-1 vaccine vector, but its immune efficacy against HIV-1 antigens needs to be optimized. The extracellular enveloped virus (EEV) of VV is capable of faster entry, earlier release, and long-range dissemination. We hypothesized that an improvement in EEV formation by the manipulation of VV genes involved in the EEV release would consequently cause an improved expression of the VV carrying HIV-1 Env antigen and a subsequent enhanced immune response. To this end, an A34R K151E mutant (rVTT-A34Rmut) from VV Tiantan strain (VTT) with robustly increased EEV release was selected to serve as an optimized vaccine vector. The results were consistent with our hypothesis: the A34R mutant-based HIV-1 vaccine candidate rVTT-A34Rmut-Env produced more HIV-1 Env antigen in vitro and in vivo, and thus led to an improved HIV-1 Env-specific T cell immune response, binding antibody, and even the neutralizing antibody response in mice without increased virulence. Meanwhile, the application of the A34R mutation on another VV-based HIV-1 vaccine candidate, VTKgpe, also exhibited a similar immune enhancement effect with no enhanced virulence. The results in this study suggested that rVTT-A34Rmut is a potentially improved vaccine vector candidate for human application. In addition, the improvement of the EEV formation via the A34R gene mutation may also be potent in other poxvirus vector-based vaccines against HIV-1 or other pathogens and even cancer in the future.


Assuntos
Vacinas contra a AIDS/imunologia , Portadores de Fármacos , Glicoproteínas/genética , HIV-1/imunologia , Mutação de Sentido Incorreto , Vaccinia virus/fisiologia , Proteínas do Envelope Viral/genética , Liberação de Vírus , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Anti-HIV/sangue , Camundongos , Linfócitos T/imunologia , Vaccinia virus/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...