Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36056752

RESUMO

Unlike any other nanoparticles known to date, magnetoelectric nanoparticles (MENPs) can generate relatively strong electric fields locally via the application of magnetic fields and, vice versa, have their magnetization change in response to an electric field from the microenvironment. Hence, MENPs can serve as a wireless two-way interface between man-made devices and physiological systems at the molecular level. With the recent development of room-temperature biocompatible MENPs, a number of novel potential medical applications have emerged. These applications include wireless brain stimulation and mapping/recording of neural activity in real-time, targeted delivery across the blood-brain barrier (BBB), tissue regeneration, high-specificity cancer cures, molecular-level rapid diagnostics, and others. Several independent in vivo studies, using mice and nonhuman primates models, demonstrated the capability to deliver MENPs in the brain across the BBB via intravenous injection or, alternatively, bypassing the BBB via intranasal inhalation of the nanoparticles. Wireless deep brain stimulation with MENPs was demonstrated both in vitro and in vivo in different rodents models by several independent groups. High-specificity cancer treatment methods as well as tissue regeneration approaches with MENPs were proposed and demonstrated in in vitro models. A number of in vitro and in vivo studies were dedicated to understand the underlying mechanisms of MENPs-based high-specificity targeted drug delivery via application of d.c. and a.c. magnetic fields. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Assuntos
Nanomedicina , Nanopartículas , Camundongos , Animais , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanotecnologia/métodos , Encéfalo
2.
Nanomedicine ; 32: 102337, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33197627

RESUMO

The brain is a massive network of neurons which are interconnected through chemical and electrical field oscillations. It is hard to overestimate the significance of the ability to control chemical and physical properties of the network at both the collective and single-cell levels. Most psychiatric and neurodegenerative diseases are typically characterized by certain aberrations of these oscillations. Recently, magnetoelectric nanoparticles (MENs) have been introduced to achieve the desired control. MENs effectively enable wirelessly controlled nanoelectrodes deep in the brain. Although MENs have been shown to cross the blood-brain barrier via intravenous (IV) administration, achieving adequate efficacy of the delivery remains an open question. Herein, through in vivo studies on a mouse model, we demonstrate at least a 4-fold improved efficacy of the targeted delivery of MENs across BBB via intranasal administration compared to an equivalent IV administration.


Assuntos
Encéfalo/metabolismo , Eletricidade , Nanopartículas de Magnetita/administração & dosagem , Tamanho da Partícula , Administração Intranasal , Animais , Camundongos Endogâmicos NOD , Camundongos SCID , Neurônios/metabolismo , Distribuição Tecidual
3.
Nano Lett ; 20(8): 5765-5772, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32639738

RESUMO

Magnetoelectric coefficient values of above 5 and 2 V cm-1 Oe-1 in 20 nm CoFe2O4-BaTiO3 and NiFe2O4-BaTiO3 core-shell magnetoelectric nanoparticles were demonstrated. These colossal values, compared to 0.1 V cm-1 Oe-1 commonly reported for the 0-3 system, are attributed to (i) the heterostructural lattice-matched interface between the magnetostrictive core and the piezoelectric shell, confirmed through transmission electron microscopy, and (ii) in situ scanning tunneling microscopy nanoprobe-based ME characterization. The nanoprobe technique allows measurements of the ME effect at a single-nanoparticle level which avoids the charge leakage problem of traditional powder form measurements. The difference in the frequency dependence of the ME value between the two material systems is owed to the Ni-ferrite cores becoming superparamagnetic in the near-dc frequency range. The availability of novel nanostructures with colossal ME values promises to unlock many new applications ranging from energy-efficient information processing to nanomedicine and brain-machine interfaces.

4.
Acc Chem Res ; 52(2): 316-325, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30698006

RESUMO

Creating an artificial muscle has been one of the grand challenges of science and engineering. The invention of such a flexible, versatile, and power efficient actuator opens the gate for a new generation of lightweight, highly efficient, and multifunctional robotics. Many current artificial muscle technologies enable low-power mobile actuators, robots that mimic efficient and natural forms of motion, autonomous robots and sensors, and lightweight wearable technologies. They also have serious applications in biomedical devices, where biocompatibility, from a chemical, flexibility, and force perspective, is crucial. It remains unknown which material will ultimately form the ideal artificial muscle. Anything from shape memory alloys (SMAs) to pneumatics to electroactive polymers (EAPs) realize core aspects of the artificial muscle goal. Among them, EAPs most resemble their biological counterparts, and they encompass both ion-infusion and electric field based actuation mechanisms. Some of the most investigated EAPs are dielectric elastomers (DEs), whose large strains, fracture toughness, and power-to-weight ratios compare favorably with natural muscle. Although dielectric elastomer actuators (DEAs) only entered the artificial muscle conversation in the last 20 years, significant technological progress has reflected their high potential. Research has focused on solving the core issues surrounding DEAs, which includes improving their operational ranges with regard to temperature and voltage, adding new functionality to the materials, and improving the reliability of the components on which they depend. Mechanisms designed to utilize their large-strain actuation and low stiffness has also attracted attention. This Account covers important research by our group and others in various avenues such as decreasing viscoelastic losses in typical DE materials, increasing their dielectric constant, and countering electromechanical instability. We also discuss variable stiffness polymers, specifically bistable electroactive polymers, which, notably, open DEAs to structural applications typically unattainable for soft-actuator technologies. Furthermore, we explore advancements related to highly compliant and transparent electrodes, a crucial component of DEAs capable of achieving high actuation strain. We then cover noteworthy applications, including several novel devices for soft robotics and microfluidics, and how those applications fit within other major developments in the field. Finally, we conclude with a discussion of the remaining challenges facing current DEA technology and speculate on research directions that may further advance DE-based artificial muscles as a whole. This Account serves as a stepping stone into the field of EAPs, which, through the work of researchers worldwide, are positioned as a potential challenger to conventional actuator technologies.


Assuntos
Órgãos Artificiais , Elastômeros/química , Músculos , Materiais Inteligentes/química , Materiais Biomiméticos/química , Eletrodos , Nanoestruturas/química , Robótica/instrumentação , Robótica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...