Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
1.
Am J Ophthalmol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735449

RESUMO

PURPOSE: To evaluate the recurrence characteristics on optical coherence tomography and clinical outcomes after phototherapeutic keratectomy (PTK) or penetrating keratoplasty (PKP) in patients with Reis-Bücklers corneal dystrophy (RBCD). DESIGN: Retrospective interventional case series. METHODS: Seventeen patients with RBCD (31 eyes, including six surgery-naïve eyes and 25 surgical eyes) received 44 surgical interventions from 1996 through 2022. PTK or PKP was performed as the initial surgical procedure. Significant recurrence was determined when best spectacle-corrected visual acuity decreased at least two lines with increased opacity in the superficial cornea. Repeated PTK or PTK on the corneal graft (CG-PTK) was considered if patients could not endure poor vision due to significant recurrence. Recurrence depth and annual increase in thickness of the central cornea and subepithelial deposits were assessed by anterior segment optical coherence tomography. RESULTS: The mean follow-up time was 12.8±8.5 years (range, 2.0-25.5 years). The mean logMAR best spectacle-corrected visual acuity improved from 1.24±0.48 preoperatively to 0.27±0.09 postoperatively in the initial PTK group (13 eyes, P<0.001), from 1.84±0.69 to 0.40±0.13 in the PKP group (12 eyes, P<0.001), from 1.04±0.46 to 0.30±0.07 in the repeated PTK group (12 times in 7 eyes, P<0.001), and from 1.29±0.43 to 0.39±0.11 in the CG-PTK group (7 times in 5 eyes, P=0.001). The median significant recurrence time was 27 months (95% confidence interval 23.9-30.1), 96 months (84.1-107.9), 31 months (28.8-33.1), and 24 months (19.8-28.2), respectively (P<0.001). The depth of superficial deposits located between the epithelium and the anterior stroma was approximately 115µm (85-159µm). The annual thickening of subepithelial deposits was 14±2µm after initial PTK, 7±3µm after PKP, 14±3µm after repeated PTK, and 30±11µm after CG-PTK, compared to 4±2µm in surgery-naïve eyes (P=0.002, 0.515, 0.002, <0.001). The thickness of the central cornea increased by 15±2µm, 7±2µm, 15±3µm, and 31±10µm per year in the four surgery groups, respectively, compared to 5±2µm in surgery-naïve eyes (P=0.001, 0.469, 0.001, <0.001). CONCLUSIONS: Better visual acuity can be achieved after PTK than PKP for treatment of RBCD. The annual thickening of subepithelial deposits may approximate an increase in central corneal thickness. The superficial distribution of subepithelial deposits makes it feasible to perform repeated PTK, even on the corneal allograft, for recurrent RBCD.

2.
Biosens Bioelectron ; 256: 116236, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608494

RESUMO

Au nano-clusters (Au NCs) were promising electrochemiluminescence (ECL) nano-materials. However, the small size of Au NCs presented a challenge in terms of their immobilization during the construction of an ECL biosensing platform. This limitation significantly hindered the wider application of Au NCs in the ECL field. In this work, we successfully used the reducibility of Ti3C2 to fabricate in situ a self-enhanced nano-probe Ti3C2-TiO2-Au NCs. The strategy of in situ generation not only improved the immobilization of Au NCs on the probe but also eliminated the requirement of adding reducing agents during preparation. In addition, in situ generated TiO2 could serve as a co-reaction accelerator, shortening the electron transfer distance between S2O82- and Au NCs, thereby improving the utilization of intermediates and enhancing the ECL response of Au NCs. The constructed ECL sensing platform could achieve sensitive detection of polynucleotide kinase (PNK). At the same time, the 5'-end phosphate group of DNA phosphorylation could chelate with a large amount of Ti on the surface of Ti3C2, thereby achieving the goal of specific detection of PNK. The sensor based on self-enhanced ECL probes had a broad dynamic range spanning for PNK detection from 10.0 to 1.0 × 107 µU mL-1, with a limit of detection of 1.6 µU mL-1. Moreover, the ECL sensor showed satisfactory detection performance in HeLa cell lysate and serum. This study not only provided insights for addressing the issue of ECL luminescence efficiency in Au NCs but also presented novel concepts for ECL self-enhancement strategies.


Assuntos
Técnicas Biossensoriais , Ouro , Limite de Detecção , Medições Luminescentes , Polinucleotídeo 5'-Hidroxiquinase , Titânio , Titânio/química , Técnicas Biossensoriais/métodos , Humanos , Medições Luminescentes/métodos , Ouro/química , Polinucleotídeo 5'-Hidroxiquinase/análise , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/química , Substâncias Luminescentes/química
3.
Analyst ; 149(9): 2756-2761, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38563766

RESUMO

New dynamic, wireless and cost-effective analytical devices are developing rapidly in biochemical analysis. Here, we report on a remotely-controlled rotating electrochemiluminescence (ECL) sensing system for enzymatic detection of a model analyte, glucose, on both polarized sides of an iron wire acting as a bipolar electrode. The iron wire is controlled by double contactless mode, involving remote electric field polarization, and magnetic field-induced rotational motion. The former triggers the interfacial polarization of both extremities of the wire by bipolar electrochemistry, which generates ECL emission of the luminol derivative (L-012) with the enzymatically produced hydrogen peroxide in presence of glucose, at both anodic and cathodic poles, simultaneously. The latter generates a convective flow, leading to an increase in mass transfer and amplifying the corresponding ECL signals. Quantitative glucose detection in human serum samples is achieved. The ECL signals were found to be a linear function of the glucose concentration within the range of 10-1000 µM and with a limit of detection of 10 µM. The dynamic bipolar ECL system simultaneously generates light emissions at both anodic and cathodic poles for glucose detection, which can be further applied to biosensing and imaging in autonomous devices.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , Medições Luminescentes/métodos , Humanos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Limite de Detecção , Glicemia/análise , Tecnologia sem Fio , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Luminol/química
4.
Environ Int ; 186: 108657, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626496

RESUMO

The increasing frequency of heat waves under the global urbanization and climate change background poses elevating risks of chronic kidney disease (CKD). Nevertheless, there has been no evidence on associations between long-term exposures to heat waves and CKD as well as the modifying effects of land cover patterns. Based on a national representative population-based survey on CKD covering 47,086 adults and high spatial resolution datasets on temperature and land cover data, we found that annual days of exposure to heat waves were associated with increased odds of CKD prevalence. For one day/year increases in HW_975_4d (above 97.5 % of annual maximum temperature and lasting for at least 4 consecutive days), the odds ratio (OR) of CKD was 1.14 (95 %CI: 1.12, 1.15). Meanwhile, stronger associations were observed in regions with lower urbanicity [rural: 1.14 (95 %CI: 1.12, 1.16) vs urban: 1.07 (95 %CI: 1.03, 1.11), Pinteraction < 0.001], lower water body coverage [lower: 1.14 (95 %CI: 1.12, 1.16) vs higher: 1.02 (95 %CI: 0.98, 1.05), Pinteraction < 0.001], and lower impervious area coverage [lower: 1.16 (95 %CI: 1.14, 1.18) vs higher: 1.06 (95 %CI: 1.03, 1.10), Pinteraction = 0.008]. In addition, this study found disparities in modifying effects of water bodies and impervious areas in rural and urban settings. In rural regions, the associations between heat waves and CKD prevalence showed a consistent decreasing trend with increases in both proportions of water bodies and impervious areas (Pinteraction < 0.05). Nevertheless, in urban regions, we observed significant effect modification by water bodies, but not by impervious areas. Our study indicates the need for targeted land planning as part of adapting to the kidney impacts of heat waves, with a focus on urbanization in rural regions, as well as water body construction and utilization in both rural and urban regions.


Assuntos
Mudança Climática , Temperatura Alta , Insuficiência Renal Crônica , Urbanização , China/epidemiologia , Humanos , Insuficiência Renal Crônica/epidemiologia , Temperatura Alta/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Prevalência , Adulto , Idoso
5.
Anal Chim Acta ; 1304: 342524, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637033

RESUMO

The inappropriate use of antibiotics undoubtedly poses a potential threat to public health, creating an increasing need to develop highly sensitive tests. In this study, we designed a new type of porphyrin metal-organic frameworks (Fe TCPP(Zn) MOFs) with homogeneous catalytic sites. The ferric-based metal ligands of Fe TCPP(Zn) MOFs acted as co-reaction accelerators, which effectively improved the conversion efficiency of H2O2 on the surface of MOFs, then increased the concentration of •OH surrounding porphyrin molecules to achieve self-enhanced electrochemiluminescence (ECL). Based on this, an aptasensor for the specific detection of kanamycin (KAN) in food and environmental water samples was constructed in combination with resonance energy transform (RET), in which Fe TCPP(Zn) MOFs were used as luminescence donor and AuNPs were used as acceptor. Under the best conditions, there was a good linear relationship between the ECL intensity and the logarithm of KAN concentration with a detection limit of 0.28 fM in the range of 1.0 × 10-7-1.0 × 10-13 M, demonstrating satisfactory selectivity and stability. At the same time, the complexity of the detection environment was reduced, which further realized the reliable analysis of KAN in milk, honey and pond water. Overall, this innovative self-enhanced ECL strategy provides a novel approach for constructing efficient ECL systems in MOFs, and also extends the application of MOFs to the analysis and detection of trace antibiotics in food and the environment.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Metaloporfirinas , Canamicina/análise , Ouro , Domínio Catalítico , Peróxido de Hidrogênio , Medições Luminescentes , Antibacterianos/análise , Técnicas Eletroquímicas , Água , Limite de Detecção
6.
Biol Reprod ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630889

RESUMO

It has been well-established that there is a connection between polycystic ovary syndrome (PCOS) pathology and gut microbiome dysbiosis. A marine-derived oligosaccharide, GV-971, has been reported to alter gut microbiota and alleviate Aß amyloidosis. In this study, the effects of GV-971 on PCOS-like mice were explored. Mice were randomly assigned into four groups: control, letrozole, letrozole + GV-971, control + GV-971. Glucose metabolism in PCOS-like mice was ameliorated by GV-971, while the reproductive endocrine disorder of PCOS-like mice was partially reversed. The messenger ribonucleic acid levels of steroidogenic enzymes in ovaries of PCOS-like mice were improved. GV-971 restored the fertility of PCOS-like mice and significantly increase the number of litters. Furthermore, GV-971 treatment effectively mitigated abnormal bile acid metabolism. Notably, after GV-971 intervention, gut microbiota alpha-diversity was considerably raised and the relative abundance of Firmicutes was reduced. In conclusion, the hyperinsulinemia and hyperandrogenemia of PCOS-like mice were alleviated by GV-971 intervention, which was associated with mitigating bile acid metabolism and modulating gut microbiota.

7.
Gut ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621923

RESUMO

OBJECTIVE: Genomic studies of gastric cancer have identified highly recurrent genomic alterations impacting RHO signalling, especially in the diffuse gastric cancer (DGC) histological subtype. Among these alterations are interchromosomal translations leading to the fusion of the adhesion protein CLDN18 and RHO regulator ARHGAP26. It remains unclear how these fusion constructs impact the activity of the RHO pathway and what is their broader impact on gastric cancer development. Herein, we developed a model to allow us to study the function of this fusion protein in the pathogenesis of DGC and to identify potential therapeutic targets for DGC tumours with these alterations. DESIGN: We built a transgenic mouse model with LSL-CLDN18-ARHGAP26 fusion engineered into the Col1A1 locus where its expression can be induced by Cre recombinase. Using organoids generated from this model, we evaluated its oncogenic activity and the biochemical effects of the fusion protein on the RHOA pathway and its downstream cell biological effects in the pathogenesis of DGC. RESULTS: We demonstrated that induction of CLDN18-ARHGAP26 expression in gastric organoids induced the formation of signet ring cells, characteristic features of DGC and was able to cooperatively transform gastric cells when combined with the loss of the tumour suppressor geneTrp53. CLDN18-ARHGAP26 promotes the activation of RHOA and downstream effector signalling. Molecularly, the fusion promotes activation of the focal adhesion kinase (FAK) and induction of the YAP pathway. A combination of FAK and YAP/TEAD inhibition can significantly block tumour growth. CONCLUSION: These results indicate that the CLDN18-ARHGAP26 fusion is a gain-of-function DGC oncogene that leads to activation of RHOA and activation of FAK and YAP signalling. These results argue for further evaluation of emerging FAK and YAP-TEAD inhibitors for these deadly cancers.

8.
J Transl Med ; 22(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566233

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are crucial in maintaining immune homeostasis and preventing autoimmunity and inflammation. A proportion of Treg cells can lose Foxp3 expression and become unstable under inflammation conditions. The precise mechanisms underlying this phenomenon remain unclear. METHODS: The PI16 gene knockout mice (PI16fl/flFoxp3Cre) in Treg were constructed, and the genotypes were identified. The proportion and phenotypic differences of immune cells in 8-week-old mice were detected by cell counter and flow cytometry. Two groups of mouse Naïve CD4+T cells were induced to differentiate into iTreg cells to observe the effect of PI16 on the differentiation and proliferation of iTreg cells, CD4+CD25+Treg and CD4+CD25- effector T cells (Teff) were selected and co-cultured with antigen presenting cells (APC) to observe the effect of PI16 on the inhibitory ability of Treg cells in vitro. The effects of directed knockout of PI16 in Treg cells on inflammatory symptoms, histopathological changes and immune cell expression in mice with enteritis and autoimmune arthritis were observed by constructing the model of antigen-induced arthritis (AIA) and colitis induced by dextran sulfate sodium salt (DSS). RESULTS: We identified peptidase inhibitor 16 (PI16) as a negative regulator of Treg cells. Our findings demonstrate that conditional knock-out of PI16 in Tregs significantly enhances their differentiation and suppressive functions. The conditional knockout of the PI16 gene resulted in a significantly higher abundance of Foxp3 expression (35.12 ± 5.71% vs. 20.00 ± 1.61%, p = 0.034) in iTreg cells induced in vitro compared to wild-type mice. Mice with Treg cell-specific PI16 ablation are protected from autoimmune arthritis (AIA) and dextran sulfate sodium (DSS)-induced colitis development. The AIA model of PI16CKO is characterized by the reduction of joint structure and the attenuation of synovial inflammation and in DSS-induced colitis model, conditional knockout of the PI16 reduce intestinal structural damage. Additionally, we found that the deletion of the PI16 gene in Treg can increase the proportion of Treg (1.46 ± 0.14% vs. 0.64 ± 0.07%, p < 0.0001) and decrease the proportion of Th17 (1.00 ± 0.12% vs. 3.84 ± 0.64%, p = 0.001). This change will enhance the shift of Th17/Treg toward Treg cells in AIA arthritis model (0.71 ± 0.06% vs. 8.07 ± 1.98%, p = 0.003). In DSS-induced colitis model of PI16CKO, the proportion of Treg in spleen was significantly increased (1.40 ± 0.15% vs. 0.50 ± 0.11%, p = 0.003), Th17 (2.18 ± 0.55% vs. 6.42 ± 1.47%, p = 0.017), Th1 (3.42 ± 0.19% vs. 6.59 ± 1.28%, p = 0.028) and Th2 (1.52 ± 0.27% vs. 2.76 ± 0.38%, p = 0.018) in spleen was significantly decreased and the Th17/Treg balance swift toward Treg cells (1.44 ± 0.50% vs. 24.09 ± 7.18%, p = 0.012). CONCLUSION: PI16 plays an essential role in inhibiting Treg cell differentiation and function. Conditional knock out PI16 gene in Treg can promote the Treg/Th17 balance towards Treg dominance, thereby alleviating the condition. Targeting PI16 may facilitate Treg cell-based therapies for preventing autoimmune diseases and inflammatory diseases. The research provides us with novel insights and future research avenues for the treatment of autoimmune diseases, particularly arthritis and colitis.


Assuntos
Artrite , Doenças Autoimunes , Colite , Animais , Camundongos , Artrite/metabolismo , Artrite/patologia , Doenças Autoimunes/metabolismo , Diferenciação Celular , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th17
9.
Mikrochim Acta ; 191(5): 259, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605266

RESUMO

A three-dimensional (3D) self-assembled AuNPs/Ti3C2 MXene hydrogel (AuNPs/Ti3C2 MXH) nanocomposite was prepared for the fabrication of a novel microRNA-122 electrochemical biosensor. The 3D hydrogel structure was gelated from two-dimensional MXene nanosheets with the assistance of graphite oxide and ethylenediamine. MXene hydrogels supported the in situ formation of Au nanoparticles (AuNPs) that predominantly exploring the (111) facet, and these AuNPs are utilized as carriers for hairpin DNA (hpDNA) probes, facilitating DNA hybridization. MXene acted as both a reductant and stabilizer, significantly improving the electrochemical signal. In addition, the conjugation of PAMAM dendrimer-encapsulated AuNPs and H-DNA worked as an ideal bridge to connect targets and efficient electrochemical tags, providing a high amplification efficiency for the sensing of microRNA-122. A linear relationship between the peak currents and the logarithm of the concentrations of microRNA-122 from 1.0 × 10-2 to 1.0 × 102 fM (I = 1.642 + 0.312 lgc, R2 = 0.9891), is obtained. The detection limit is  0.8 × 10-2 fM (S/N = 3). The average recovery for human serum detection ranged from 97.32 to 101.4% (RSD < 5%).


Assuntos
Nanopartículas Metálicas , MicroRNAs , Nitritos , Elementos de Transição , Humanos , Ouro/química , Nanopartículas Metálicas/química , Hidrogéis , Titânio/química , DNA/química
10.
J Environ Manage ; 358: 120888, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615399

RESUMO

Oil dispersion, a crucial process in oil transport, involves the detachment of oil droplets from slicks and their introduction into the water column, influencing subsequent oil migration and transformation. This study examines oil dispersion, considering characteristics, stability, and mechanisms, while evaluating the impact of dispersants and salinity. Results show the significant role of surfactant type in dispersants on oil dispersion characteristics, with anionic surfactants exhibiting higher sensitivity to salinity changes compared to nonionic surfactants. The dispersion efficiency varies with salinity, with anionic surfactants performing better in low salinity (<20‰) and nonionic surfactants showing superior performance at 30-35‰ salinities. Rheological analysis illustrates the breakup and coalescence of oil droplets within the shear rates of breaking waves. An increase in interfacial film rigidity impedes the coalescence of oil droplets, contributing to the dynamic stability of the oil-water hybrid system. The use of GM-2, a nonionic dispersant, results in the formation of a solid-like interface, characterized by increased elastic modulus, notably at 20‰ salinity. However, stable droplet size distribution (DSD) at 35‰ salinity for 60 h suggests droplets can remain dispersed in seawater. The enhancement of stability of oil dispersion is interpreted as the result of two mechanisms: stabilizing DSD and developing the strength of viscoelastic interfacial film. These findings offer insights into oil dispersion dynamics, highlighting the importance of surfactant selection and salinity in governing dispersion behavior, and elucidating mechanisms underlying dispersion stability.


Assuntos
Tensoativos , Tensoativos/química , Poluição por Petróleo , Salinidade , Reologia , Petróleo , Água do Mar/química
11.
World J Urol ; 42(1): 170, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506964

RESUMO

OBJECTIVE: To compare the outcomes between a modified Retzius-sparing robot-assisted radical prostatectomy (mRS-RARP) technique and conventional robot-assisted radical prostatectomy (Con-RARP) technique for cases with anterior prostate cancer (PCa), especially positive surgical margin (PSM) rates and urinary continence (UC). PATIENTS AND METHODS: We retrospectively included 193 mRS-RARP and 473 Con-RARP consecutively performed by a single surgeon for anterior PCa. Perioperative complications, pathology, and continence were compared after propensity score matching using 9 variables. RESULTS: After matching (n = 193 per group), PSM were not significantly different in the two groups (16.1% in mRS-RARP group vs. 15.0% in Con-RARP group, p = 0.779). The UC at catheter removal and at 1-month was significantly higher in the mRS-RARP (24.9% vs. 9.8%, p < 0.001; 29.0% vs. 13.5%, p < 0.001, respectively), but not at 3-, 6-, and 12-month follow-ups (p = 0.261, 0.832, and 0.683, respectively). CONCLUSION: mRS-RARP seems to be an oncologically safe approach for patients with anterior PCa. Compared with the conventional approach, mRS-RARP approach shows benefits in the short-term postoperative UC recovery.


Assuntos
Neoplasias da Próstata , Procedimentos Cirúrgicos Robóticos , Robótica , Masculino , Humanos , Estudos Retrospectivos , Pontuação de Propensão , Prostatectomia/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Resultado do Tratamento
12.
Sci Adv ; 10(13): eadk2152, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552018

RESUMO

The evolution of oxygen cycles on Earth's surface has been regulated by the balance between molecular oxygen production and consumption. The Neoproterozoic-Paleozoic transition likely marks the second rise in atmospheric and oceanic oxygen levels, widely attributed to enhanced burial of organic carbon. However, it remains disputed how marine organic carbon production and burial respond to global environmental changes and whether these feedbacks trigger global oxygenation during this interval. Here, we report a large lithium isotopic and elemental dataset from marine mudstones spanning the upper Neoproterozoic to middle Cambrian [~660 million years ago (Ma) to 500 Ma]. These data indicate a dramatic increase in continental clay formation after ~525 Ma, likely linked to secular changes in global climate and compositions of the continental crust. Using a global biogeochemical model, we suggest that intensified continental weathering and clay delivery to the oceans could have notably increased the burial efficiency of organic carbon and facilitated greater oxygen accumulation in the earliest Paleozoic oceans.

13.
Food Chem ; 448: 139003, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547710

RESUMO

Chloramphenicol (CAP) is known to be harmful to the environment and food, posing a threat to human health. Developing an effective and convenient method for detecting CAP is crucial. An electrochemiluminescence (ECL) biosensor has been designed for sensitive detection of CAP. The improved ECL behavior was attributed to the synergistic effect of N and P co-doped Ti3C2-Apt1 (N, P-Ti3C2-Apt1) nanoprobes and high intensity focused ultrasound (HIFU) pretreatment. The doping of N and P could improve the electrochemical performance of Ti3C2. HIFU pretreatment generated more reactive oxygen species (ROS) in the luminol-O2 system. N, P-Ti3C2 could aggregate and catalyze ROS, causing an increase in ECL intensity. Furthermore, N, P-Ti3C2 as a carrier loaded more aptamer, which could recognize CAP with high specificity. The detection limit was 0.01 ng/mL. This biosensor has been successfully applied in milk and environmental water samples, highlighting its potential in the field of food and environmental analysis.

14.
Clin Chim Acta ; 557: 117860, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508572

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common infertility disorder which affects reproductive-aged women. However, metabolic change profiles of follicular fluid (FF) in lean and obese women diagnosed with and without PCOS remains unclear. METHODS: 95 infertile women were divided into four subgroups: LC (lean control), OC (overweight control), LP (lean PCOS), and OP (overweight PCOS). The FF samples were collected during oocyte retrieval and assayed by ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) metabolomics. RESULTS: A total of 236 metabolites were identified by metabolic analysis. The pathway enrichment analysis revealed that the glycerophospholipid metabolism (impact = 0.11182), ether lipid metabolism (impact = 0.14458), and primary bile acid biosynthesis (impact = 0.03267) were related to metabolic pathway between PCOS and control. Correlation analyses showed that epitestosterone sulfate was found positively correlated with fertilization rate in PCOS, while falcarindione, lucidone C. and notoginsenoside I was found to be negatively correlated. The combined four biomarkers including lucidone C, epitestosterone sulfate, falcarindione, and notoginsenoside I was better in predicting live birth rate, with AUC of 0.779. CONCLUSION: The follicular fluid of women with PCOS showed unique metabolic characteristics. Our study provides better identification of PCOS follicular fluid metabolic dynamics, which may serve as potential biomarkers of live birth.


Assuntos
Ciclopentanos , Infertilidade Feminina , Síndrome do Ovário Policístico , Gravidez , Feminino , Humanos , Adulto , Líquido Folicular/metabolismo , Nascido Vivo , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/metabolismo , Infertilidade Feminina/diagnóstico , Espectrometria de Massa com Cromatografia Líquida , Sobrepeso , Epitestosterona/análise , Epitestosterona/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fertilização in vitro , Biomarcadores/análise , Sulfatos/análise , Sulfatos/metabolismo
15.
J Affect Disord ; 354: 688-693, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521139

RESUMO

OBJECTIVE: Impaired cognitive function in older individuals significantly affects quality of life. The interaction between comorbid diabetes and cardiovascular disease (CVD) and its impact on cognitive impairment remains unclear. METHODS: This study analyzed 2564 subjects from the National Health and Nutrition Examination Survey dataset. Cognitive function was measured using various scores, including CERAD Total Score, CERAD Delayed Recall Score (CDRS), Animal Fluency Total Score, and Digit Symbol Score. Multiple regression models were constructed to explore the relationship between different diseases and cognitive function, considering covariates such as age, sex, education, body mass index, alcohol intake, smoking, physical activity, kidney function, and hypertension. RESULTS: After adjusting for multiple factors, the presence of CVD, diabetes, or both showed a significant negative association with the total cognitive score. The CDRS was associated with both CVD and diabetes. The Digit Symbol score was associated with the presence of CVD, diabetes, or both. No significant differences were found between patients with diabetes and CVD in cognitive test results. An interaction between CVD and diabetes was observed in relation to the CDRS but not in other test scores or the total score. CONCLUSION: The individual impact of each disease on cognitive function was not significant. However, an interaction between CVD and diabetes was found when both diseases coexisted, specifically in relation to delayed learning ability.


Assuntos
Doenças Cardiovasculares , Disfunção Cognitiva , Diabetes Mellitus , Humanos , Idoso , Doenças Cardiovasculares/epidemiologia , Estudos Transversais , Qualidade de Vida , Inquéritos Nutricionais , Diabetes Mellitus/epidemiologia , Cognição , Disfunção Cognitiva/epidemiologia
16.
Sci Adv ; 10(9): eadj5474, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427740

RESUMO

The surficial cycling of Mg is coupled with the global carbon cycle, a predominant control of Earth's climate. However, how Earth's surficial Mg cycle evolved with time has been elusive. Magnesium isotope signatures of seawater (δ26Mgsw) track the surficial Mg cycle, which could provide crucial information on the carbon cycle in Earth's history. Here, we present a reconstruction of δ26Mgsw evolution over the past 2 billion years using marine halite fluid inclusions and sedimentary dolostones. The data show that δ26Mgsw decreased, with fluctuations, by about 1.4‰ from the Paleoproterozoic to the present time. Mass balance calculations based on this δ26Mgsw record reveal a long-term decline in net dolostone burial (NDB) over the past 2 billion years, due to the decrease in dolomitization in the oceans and the increase in dolostone weathering on the continents. This underlines a previously underappreciated connection between the weathering-burial cycle of dolostone and the Earth's climate on geologic timescales.

17.
Quant Imaging Med Surg ; 14(3): 2627-2639, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38545037

RESUMO

Background: In type 2 diabetes mellitus (T2DM) patients, left ventricular systolic dyssynchrony (LVSD) with normal left ventricular ejection fraction (LVEF) and normal myocardial perfusion could referred to as subclinical myocardial damage, which is difficult to diagnose at an early stage. Epicardial adipose tissue, a distinctive heart-specific visceral fat, is closely related to various cardiovascular diseases. The objective of this study was to investigate the correlation between epicardial fat volume (EFV) and subclinical myocardial damage in T2DM patients. Methods: This retrospective cross-sectional study included 117 T2DM patients with normal myocardial perfusion by single photon emission computed tomography-computed tomography (SPECT-CT) and normal LVEF by echocardiography. The study was conducted from January 2018 to December 2022. Patient data were collected through electronic medical records including basic patient information, medical history, laboratory tests, and medication data. The EFV was quantified through a non-contrast CT scan. Quantitative indicators of LVSD including phase standard deviation (PSD) and phase histogram bandwidth (PBW) were obtained through phase analysis of the gated rest myocardial perfusion imaging (MPI). Additionally, 83 healthy individuals at the same time were selected to gain the reference threshold of LVSD indicators (13.1° for PSD and 37.6° for PBW). Univariate and multivariable logistic regression models were performed to analyze factors influencing LVSD. A generalized additive model (GAM) was applied to explore the relationship between EFV and LVSD. The receiver operating characteristic (ROC) curve was used to analyze the diagnostic value of EFV for LVSD. Results: Among all patients, 32 (27.4%) patients had LVSD. Compared with the non-LVSD group, the body mass index (BMI) and EFV were higher in the LVSD group (25.83±2.66 vs. 23.94±3.13 kg/m2; 142.41±44.17 vs. 108.01±38.24 cm3, respectively, both P<0.05). Multivariate regression analysis revealed that EFV was independently associated with LVSD [odds ratio (OR) =1.19; 95% confidence interval (CI): 1.06-1.34; P=0.003]. Age, BMI, incidence of hypertension, and LVSD were increased with tertiles of EFV (all P<0.05). The GAM indicated a linear association between EFV and LVSD. The ROC curve analysis concluded that the area under the curve (AUC) of EFV for predicting subclinical myocardial damage in T2DM patients was 0.732 (95% CI: 0.633-0.831, P<0.001), with the optimal threshold of 122.26 cm3, sensitivity of 71.9%, and specificity of 69.4%. Conclusions: EFV is an independent risk factor for LVSD in T2DM patients with normal LVEF and normal MPI, which could potentially serve as a novel imaging marker and a potential therapeutic target for subclinical myocardial damage.

18.
Autophagy ; : 1-11, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522082

RESUMO

MCOLN1/TRPML1 is a nonselective cationic channel specifically localized to the late endosome and lysosome. With its property of mediating the release of several divalent cations such as Ca2+, Zn2+ and Fe2+ from the lysosome to the cytosol, MCOLN1 plays a pivotal role in regulating a variety of cellular events including endocytosis, exocytosis, lysosomal biogenesis, lysosome reformation, and especially in Macroautophagy/autophagy. Autophagy is a highly conserved catabolic process that maintains cytoplasmic integrity by removing superfluous proteins and damaged organelles. Acting as the terminal compartments, lysosomes are crucial for the completion of the autophagy process. This review delves into the emerging role of MCOLN1 in controlling the autophagic process by regulating lysosomal ionic homeostasis, thereby governing the fundamental functions of lysosomes. Furthermore, this review summarizes the physiological relevance as well as molecular mechanisms through which MCOLN1 orchestrates autophagy, consequently influencing mitochondria turnover, cell apoptosis and migration. In addition, we have illustrated the implications of MCOLN1-regulated autophagy in the pathological process of cancer and myocardial ischemia-reperfusion (I/R) injury. In summary, given the involvement of MCOLN1-mediated autophagy in the pathogenesis of cancer and myocardial I/R injury, targeting MCOLN1 May provide clues for developing new therapeutic strategies for the treatment of these diseases. Exploring the regulation of MCOLN1-mediated autophagy in diverse diseases contexts will surely broaden our understanding of this pathway and offer its potential as a promising drug target.Abbreviation: CCCP:carbonyl cyanide3-chlorophenylhydrazone; CQ:chloroquine; HCQ: hydroxychloroquine;I/R: ischemia-reperfusion; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MCOLN1/TRPML1:mucolipin TRP cation channel 1; MLIV: mucolipidosis type IV; MTORC1:MTOR complex 1; ROS: reactive oxygenspecies; SQSTM1/p62: sequestosome 1.

19.
Int J Biochem Cell Biol ; 169: 106541, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309648

RESUMO

Microglial are major players in neuroinflammation that have recently emerged as potential therapeutic targets for neuropathic pain. Glucose metabolic programming has been linked to differential activation state and function in microglia. Tumor necrosis factor α-induced protein 8-like-2 (TNFAIP8L2) is an important component in regulating the anti-inflammatory response. However, the role of TNFAIP8L2 in microglia differential state during neuropathic pain and its interplay with glucose metabolic reprogramming in microglia has not yet been determined. Thus, we aimed to investigate the role of TNFAIP8L2 in the status of microglia in vitro and in vivo. BV2 microglial cells were treated with lipopolysaccharides plus interferon-gamma (LPS/IFNγ) or interleukin-4 (IL-4) to induce the two different phenotypes of microglia in vitro. In vivo experiments were conducted by chronic constriction injury of the sciatic nerve (CCI). We investigated whether TNFAIP8L2 regulates glucose metabolic programming in BV2 microglial cells. The data in vitro showed that TNFAIP8L2 lowers glycolysis and increases mitochondrial oxidative phosphorylation (OXPHOS) in inflammatory microglia. Blockade of glycolytic pathway abolished TNFAIP8L2-mediated differential activation of microglia. TNFAIP8L2 suppresses inflammatory microglial activation and promotes restorative microglial activation in BV2 microglial cells and in spinal cord microglia after neuropathic pain. Furthermore, TNFAIP8L2 controls differential activation of microglia and glucose metabolic reprogramming through the MAPK/mTOR/HIF-1α signaling axis. This study reveals that TNFAIP8L2 plays a critical role in neuropathic pain, providing important insights into glucose metabolic reprogramming and microglial phenotypic transition, which indicates that TNFAIP8L2 may be used as a potential drug target for the prevention of neuropathic pain.


Assuntos
Microglia , Neuralgia , Humanos , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Reprogramação Metabólica , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Proteínas de Transporte/metabolismo , Fenótipo , Glucose/farmacologia , Glucose/metabolismo , Lipopolissacarídeos/farmacologia
20.
Brain Imaging Behav ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407738

RESUMO

Suicide is a major concern for health, and depression is an established proximal risk factor for suicide. This study aimed to investigate white matter features associated with suicide. We constructed white matter structural networks by deterministic tractography via diffusion tensor imaging in 51 healthy controls, 47 depressed patients without suicide plans or attempts and 56 depressed patients with suicide plans or attempts. Then, graph theory analysis was used to measure global and nodal network properties. We found that local efficiency was decreased and path length was increased in suicidal depressed patients compared to healthy controls and non-suicidal depressed patients; moreover, the clustering coefficient was decreased in depressed patients compared to healthy controls; and the global efficiency and normalized characteristic path length was increased in suicidal depressed patients compared to healthy controls. Similarly, compared with those in non-suicidal depressed patients, nodal efficiency in the thalamus, caudate, medial orbitofrontal cortex, hippocampus, olfactory cortex, supplementary motor area and Rolandic operculum was decreased. In summary, compared with those of non-suicidal depressed patients, the structural connectome of suicidal depressed patients exhibited weakened integration and segregation and decreased nodal efficiency in the fronto-limbic-basal ganglia-thalamic circuitry. These alterations in the structural networks of depressed suicidal brains provide insights into the underlying neurobiology of brain features associated with suicide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...