Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 257: 116303, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663326

RESUMO

Discriminating secretory phenotypes provides a direct, intact, and dynamic way to evaluate the heterogeneity in cell states and activation, which is significant for dissecting non-genetic heterogeneity for human health studies and disease diagnostics. In particular, secreted microRNAs, soluble signaling molecules released by various cells, are increasingly recognized as a critical mediator for cell-cell communication and the circulating biomarkers for disease diagnosis. However, single-cell analysis of secreted miRNAs is still lacking due to the limited available tools. Herein, we realized three-plexed miRNA secretion analysis over four time points from single cells encapsulated in picoliter droplets with extreme simplicity, coupling vortexing-generated single-cell droplets with multiplexed molecular beacons. Notably, our platform only requires pipetting and vortexing steps to finish the assay setup within 5 min with minimal training, and customized software was developed for automatic data quantification. Applying the platform to human cancer cell lines and primary cells revealed previously undifferentiated heterogeneity and paracrine signaling underlying miRNA secretion. This platform can be used to dissect secretion heterogeneity and cell-cell interactions and has the potential to become a widely used tool in biomedical research.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , MicroRNAs/genética , Técnicas Biossensoriais/métodos , Comunicação Celular , Linhagem Celular Tumoral
2.
Artigo em Inglês | MEDLINE | ID: mdl-38069572

RESUMO

Aims: Radiotherapy inevitably causes radiation damage to the salivary glands (SGs) in patients with head and neck cancers (HNCs). Excessive reactive oxygen species (ROS) levels and imbalanced mitochondrial homeostasis are serious consequences of ionizing radiation in SGs; however, there are few mitochondria-targeting therapeutic approaches. Glycyrrhizin is the main extract of licorice root and exhibits antioxidant activity to relieve mitochondrial damage in certain oxidative stress conditions. Herein, the effects of glycyrrhizin on irradiated submandibular glands (SMGs) and the related mechanisms were investigated. Results: Glycyrrhizin reduced radiation damage in rat SMGs at both the cell and tissue levels, and promoted saliva secretion in irradiated SMGs. Glycyrrhizin significantly downregulated high-mobility group box-1 protein (HMGB1) and toll-like receptor 5 (TLR5). Moreover, glycyrrhizin significantly suppressed the increases in malondialdehyde and glutathione disulfide (GSSG) levels; elevated the activity of some critical antioxidants, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione (GSH); and increased the GSH/GSSG ratio in irradiated cells. Importantly, glycyrrhizin effectively enhanced thioredoxin-2 levels and scavenged mitochondrial ROS, inhibited the decline in mitochondrial membrane potential, improved adenosine triphosphate synthesis, preserved the mitochondrial ultrastructure, activated the proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)/nuclear respiratory factor 1/2 (NRF1/2)/mitochondrial transcription factor A (TFAM) signaling pathway, and inhibited mitochondria-related apoptosis in irradiated SMG cells and tissues. Innovation: Radiotherapy causes radiation sialadenitis in HNC patients. Our data suggest that glycyrrhizin could be a mitochondria-targeted antioxidant for the prevention of radiation damage in SGs. Conclusion: These findings demonstrate that glycyrrhizin protects SMGs from radiation damage by downregulating HMGB1/TLR5 signaling, maintaining intracellular redox balance, eliminating mitochondrial ROS, preserving mitochondrial homeostasis, and inhibiting apoptosis.

3.
Int J Oral Sci ; 15(1): 32, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532712

RESUMO

Carcinoma-associated fibroblasts (CAFs) are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix (ECM). The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase (LOX). Small extracellular vesicles (sEVs) mediate cell-cell communication. However, the interactions between sEVs and the ECM remain unclear. Here, we demonstrated that sEVs released from oral squamous cell carcinoma (OSCC)-derived CAFs induce collagen crosslinking, thereby promoting epithelial-mesenchymal transition (EMT). CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking, and a LOX inhibitor or blocking antibody suppressed this effect. Active LOX (αLOX), but not the LOX precursor, was enriched in CAF sEVs and interacted with periostin, fibronectin, and bone morphogenetic protein-1 on the surface of sEVs. CAF sEV-associated integrin α2ß1 mediated the binding of CAF sEVs to collagen I, and blocking integrin α2ß1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I. CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway. Taken together, these findings reveal a novel role of CAF sEVs in tumor ECM remodeling, suggesting a critical mechanism for CAF-induced EMT of cancer cells.


Assuntos
Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias Bucais , Humanos , Paxilina/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Carcinoma de Células Escamosas/patologia , Transição Epitelial-Mesenquimal , Integrina alfa2beta1/metabolismo , Neoplasias Bucais/patologia , Colágeno/metabolismo , Fibroblastos , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Lett Appl Microbiol ; 76(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688784

RESUMO

2,5-Pyridinedicarboxylic acid (2,5-PDA), a natural N-heterocyclic compound and a substitute for production in plastics, was widely distributed in industrial wastewater. However, the biodegradation of 2,5-PDA has been rarely reported. In this study, strain YJ-5, which could utilize 2,5-PDA as the sole carbon source for growth was isolated from pesticide-contaminated soil. Based on the comparative analysis of the 16S rRNA gene sequence, strain YJ-5 was identified as Agrobacterium sp. 2,5-PDA was completely degraded within 7 d and the optimal growth conditions of temperature, pH, and substrate concentration were 30°C, 7.0, and 0.6 mmol-1, respectively. A new intermediate 6-hydroxy-2,5-PDA was determined by UV/VIS spectroscopy and liquid chromatograph coupled time of flight mass spectrometry. When the electron acceptor (2,6-dichlorophenolindophenol) was employed, the 2,5-PDA could be converted by cell extracts of strain YJ-5 cells into 6-hydroxy-2,5-PDA. These results provided new insights for biodegradation on pyridine dicarboxylate.


Assuntos
Agrobacterium , Piridinas , Agrobacterium/genética , RNA Ribossômico 16S/genética , Biodegradação Ambiental , Filogenia , Microbiologia do Solo
5.
Environ Microbiol ; 25(3): 675-688, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527381

RESUMO

Microbial ammonia oxidation is vital to the nitrogen cycle. A biological process, called Dirammox (direct ammonia oxidation, NH3 →NH2 OH→N2 ), has been recently identified in Alcaligenes ammonioxydans and Alcaligenes faecalis. However, its transcriptional regulatory mechanism has not yet been fully elucidated. The present study characterized a new MocR-like transcription factor DnfR that is involved in the Dirammox process in A. faecalis strain JQ135. The entire dnf cluster was composed of 10 genes and transcribed as five transcriptional units, that is, dnfIH, dnfR, dnfG, dnfABCDE and dnfF. DnfR activates the transcription of dnfIH, dnfG and dnfABCDE genes, and represses its own transcription. The intact 1506-bp dnfR gene was required for activation of Dirammox. Electrophoretic mobility shift assays and DNase I footprinting analyses showed that DnfR has one binding site in the dnfH-dnfR intergenic region and two binding sites in the dnfG-dnfA intergenic region. Three binding sites of DnfR shared a 6-bp repeated conserved sequence 5'-GGTCTG-N17 -GGTCTG-3' which was essential for the transcription of downstream target genes. Cysteine and glutamate act as possible effectors of DnfR to activate the transcription of transcriptional units of dnfG and dnfABCDE, respectively. This study provided new insights in the transcriptional regulation mechanism of Dirammox by DnfR in A. faecalis JQ135.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/química , Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Amônia/metabolismo , Sítios de Ligação , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
6.
Environ Res ; 216(Pt 1): 114421, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162464

RESUMO

Quinolinic acid (QA) is an essential nitrogen-containing aromatic heterocyclic compounds in organisms and it also acts as an important intermediate in chemical industry, which has strong neurotoxicity and cytotoxicity. The wide range of sources and applications caused the release and accumulation of QA in the environment which might poses a hazard to ecosystems and human health. However, few research on the degradation of QA by microorganisms and toxicity of QA and its metabolites were reported. Alcaligenes faecalis JQ191 could degrade QA but the genetic foundation of QA degradation has not been studied. In this study, the gene cluster quiA1A2A3A4 was identified from A. faecalis JQ191, which was responsible for the initial catabolism step of QA. The quiA1A2A3A4 gene cluster encodes a novel cytoplasmic four-component hydroxylase QuiA. The 1H nuclear magnetic resonance indicated that QuiA catalyzed QA to 6-hydroxyquinolinic acid (6HQA) and the H218O-labeling analysis confirmed that the hydroxyl group incorporating into 6HQA was derived from water. Toxicity tests showed that the QA could approximately inhibit 20%-80% growth of Chlorella ellipsoidea, and 6HQA could relieve at least 50% QA growth inhibition of Chlorella ellipsoidea, indicating that the 6-hydroxylation of QA by QuiA is a detoxification process. This research provides new insights into the metabolism of QA by microorganism and potential application in the bioremediation of toxic pyridine derivatives-contaminated environments.


Assuntos
Alcaligenes faecalis , Chlorella , Ácido Quinolínico , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/genética , Chlorella/metabolismo , Ecossistema , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ácido Quinolínico/metabolismo
7.
Antioxidants (Basel) ; 11(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883904

RESUMO

Radiotherapy for patients with head and neck cancer inevitably causes radiation damage to salivary glands (SGs). Overproduction of reactive oxygen species (ROS) leads to mitochondrial damage and is critical in the pathophysiology of SG radiation damage. However, mitochondrial-targeted treatment is unavailable. Herein, both in vitro and in vivo models of radiation-damaged rat submandibular glands (SMGs) were used to investigate the potential role of salidroside in protecting irradiated SGs. Cell morphology was observed with an inverted phase-contrast microscope. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), mitochondrial ROS, mitochondrial membrane potential (MMP), and ATP were measured using relevant kits. The mitochondrial ultrastructure was observed under transmission electron microscopy. Cell apoptosis was determined by Western blot and TUNEL assays. Saliva was measured from Wharton's duct. We found that salidroside protected SMG cells and tissues against radiation and improved the secretion function. Moreover, salidroside enhanced the antioxidant defense by decreasing MDA, increasing SOD, CAT, and GSH, and scavenging mitochondrial ROS. Furthermore, salidroside rescued the mitochondrial ultrastructure, preserved MMP and ATP, suppressed cytosolic cytochrome c and cleaved caspase 3 expression, and inhibited cell apoptosis. Together, these findings first identify salidroside as a mitochondrial-targeted antioxidant for preventing SG radiation damage.

8.
Appl Environ Microbiol ; 88(11): e0017222, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35604228

RESUMO

Picolinic acid (PA) is a natural toxic pyridine derivative as well as an important intermediate used in the chemical industry. In a previous study, we identified a gene cluster, pic, that responsible for the catabolism of PA in Alcaligenes faecalis JQ135. However, the transcriptional regulation of the pic cluster remains known. This study showed that the entire pic cluster was composed of 17 genes and transcribed as four operons: picR, picCDEF, picB4B3B2B1, and picT1A1A2A3T2T3MN. Deletion of picR, encoding a putative MarR-type regulator, greatly shortened the lag phase of PA degradation. An electrophoretic mobility shift assay and DNase I footprinting showed that PicR has one binding site in the picR-picC intergenic region and two binding sites in the picB-picT1 intergenic region. The DNA sequences of the three binding sites have the palindromic characteristics of TCAG-N4-CTNN: the space consists of four nonspecific bases, and the four palindromic bases on the left and the first two palindromic bases on the right are strictly conserved, while the last two bases on the right vary among the three binding sites. An in vivo ß-galactosidase activity reporter assay indicated that 6-hydroxypicolinic acid but not PA acted as a ligand of PicR, preventing PicR from binding to promoter regions and thus derepressing the transcription of the pic cluster. This study revealed the negative transcriptional regulation mechanism of PA degradation by PicR in A. faecalis JQ135 and provides new insights into the structure and function of the MarR-type regulator. IMPORTANCE The pic gene cluster was found to be responsible for PA degradation and widely distributed in Alpha-, Beta-, and Gammaproteobacteria. Thus, it is very necessary to understand the regulation mechanism of the pic cluster in these strains. This study revealed that PicR binds to three sites of the promoter regions of the pic cluster to multiply regulate the transcription of the pic cluster, which enables A. faecalis JQ135 to efficiently utilize PA. Furthermore, the study also found a unique palindrome sequence for binding of the MarR-type regulator. This study enhanced our understanding of microbial catabolism of environmental toxic pyridine derivatives.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Intergênico , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Ácidos Picolínicos , Ligação Proteica , Piridinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Microorganisms ; 10(4)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35456847

RESUMO

Quinoline is a typical nitrogen-heterocyclic compound with high toxicity and carcinogenicity which exists ubiquitously in industrial wastewater. In this study, a new quinoline-degrading bacterial strain Rhodococcus sp. JH145 was isolated from oil-contaminated soil. Strain JH145 could grow with quinoline as the sole carbon source. The optimum growth temperature, pH, and salt concentration were 30 °C, 8.0, and 1%, respectively. 100 mg/L quinoline could be completely removed within 28 h. Particularly, strain JH145 showed excellent quinoline biodegradation ability under a high-salt concentration of 7.5%. Two different quinoline degradation pathways, a typical 8-hydroxycoumarin pathway, and a unique anthranilate pathway were proposed based on the intermediates identified by liquid chromatography-time of flight mass spectrometry. Our present results provided new candidates for industrial application in quinoline-contaminated wastewater treatment even under high-salt conditions.

10.
Appl Environ Microbiol ; 88(6): e0226121, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108103

RESUMO

Ammonia oxidation is an important process in both the natural nitrogen cycle and nitrogen removal from engineered ecosystems. Recently, a new ammonia oxidation pathway termed Dirammox (direct ammonia oxidation, NH3→NH2OH→N2) has been identified in Alcaligenes ammonioxydans. However, whether Dirammox is present in other microbes, as well as its genetic regulation, remains unknown. In this study, it was found that the metabolically versatile bacterium Alcaligenes faecalis strain JQ135 could efficiently convert ammonia into N2 via NH2OH under aerobic conditions. Genetic deletion and complementation results suggest that dnfABC is responsible for the ammonia oxidation to N2 in this strain. Strain JQ135 also employs aerobic denitrification, mainly producing N2O and trace amounts of N2, with nitrite as the sole nitrogen source. Deletion of the nirK and nosZ genes, which are essential for denitrification, did not impair the capability of JQ135 to oxidize ammonia to N2 (i.e., Dirammox is independent of denitrification). Furthermore, it was also demonstrated that pod (which encodes pyruvic oxime dioxygenase) was not involved in Dirammox and that AFA_16745 (which was previously annotated as ammonia monooxygenase and is widespread in heterotrophic bacteria) was not an ammonia monooxygenase. The MocR-family transcriptional regulator DnfR was characterized as an activator of the dnfABC operon with the binding motif 5'-TGGTCTGT-3' in the promoter region. A bioinformatic survey showed that homologs of dnf genes are widely distributed in heterotrophic bacteria. In conclusion, this work demonstrates that, besides A. ammonioxydans, Dirammox occurs in other bacteria and is regulated by the MocR-family transcriptional regulator DnfR. IMPORTANCE Microbial ammonia oxidation is a key and rate-limiting step of the nitrogen cycle. Three previously known ammonia oxidation pathways (i.e., nitrification, anaerobic ammonia oxidation [Anammox], and complete ammonia oxidation [Comammox]) are mediated by autotrophic microbes. However, the genetic foundations of ammonia oxidation by heterotrophic microorganisms have not been investigated in depth. Recently, a previously unknown pathway, termed direct ammonia oxidation to N2 (Dirammox), has been identified in the heterotrophic bacterium Alcaligenes ammonioxydans HO-1. This paper shows that, in the metabolically versatile bacterium Alcaligenes faecalis JQ135, the Dirammox pathway is mediated by dnf genes, which are independent of the denitrification pathway. A bioinformatic survey suggests that homologs of dnf genes are widely distributed in bacteria. These findings enhance the understanding of the molecular mechanisms of heterotrophic ammonia oxidation to N2.


Assuntos
Alcaligenes faecalis , Aerobiose , Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Amônia/metabolismo , Desnitrificação , Ecossistema , Nitrificação , Nitritos/metabolismo , Nitrogênio/metabolismo
11.
Appl Environ Microbiol ; 88(6): e0239021, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138929

RESUMO

5-Hydroxypicolinic acid (5HPA), an important natural pyridine derivative, is microbially degraded in the environment. Previously, a gene cluster, hpa, responsible for 5HPA degradation, was identified in Alcaligenes faecalis JQ135. However, the transcription regulation mechanism of the hpa cluster is still unknown. In this study, the transcription start site and promoter of the hpa operon was identified. Quantitative reverse transcription-PCR and promoter activity analysis indicated that the transcription of the hpa operon was negatively regulated by a TetR family regulator, HpaR, whereas the transcription of hpaR itself was not regulated by HpaR. Electrophoretic mobility shift assay and DNase I footprinting revealed that HpaR bound to two DNA sequences, covering the -35 region and -10 region, respectively, in the promoter region of the hpa operon. Interestingly, the two binding sequences are partially palindromic, with 3 to 4 mismatches and are complementary to each other. 5HPA acted as a ligand of HpaR, preventing HpaR from binding to promoter region and derepressing the transcription of the hpa operon. The study revealed that HpaR binds to two unique complementary sequences of the promoter of the hpa operon to negatively regulate the catabolism of 5HPA. IMPORTANCE This study revealed that the transcription of the hpa operon was negatively regulated by a TetR family regulator, HpaR. The binding of HpaR to the promoter of the hpa operon has the following unique features: (i) HpaR has two independent binding sites in the promoter of the hpa operon, covering -35 region and -10 region, respectively; (ii) the palindrome sequences of the two binding sites are complementary to each other; and (iii) both of the binding sites include a 10-nucleotide partial palindrome sequence with 3 to 4 mismatches. This study provides new insights into the binding features of the TetR family regulator with DNA sequences.


Assuntos
Alcaligenes faecalis , Alcaligenes faecalis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Óperon , Regiões Promotoras Genéticas
12.
Sci Total Environ ; 806(Pt 1): 150556, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582850

RESUMO

Heterotrophic nitrification bacteria play a critical role in nitrogen cycling and pollution removal. However, the underlying nitrification mechanisms are diverse and have rarely been investigated at the genetic level. In this study, the new heterotrophic nitrifier Pseudomonas sp. strain JQ170 was isolated. Strain JQ170 can utilize ammonia (NH4+-N), nitrite (NO2--N), or nitrate (NO3--N) as sole nitrogen sources, preferring NH4+-N. A ratio of 96.4% of 1.0 mM NH4+-N was removed in 24 h. The optimum pH, temperature, and carbon source for NH4+-N removal were pH 7.0, 30 °C, and citrate, at a C/N ratio of 9-18, respectively. During the NH4+-N removal process, only NO2--N but neither hydroxylamine, NO3--N, nor gaseous nitrogen were detected. A random transposon insertion mutagenesis library of strain JQ170 was constructed. Two NO2--N-production deficient mutants were screened and transposon insertion sites were located in nap genes (which encode periplasmic NO3--N reductase Nap). Further gene knockout and complementation of the napA gene confirmed nap as essential for NO2--N production. The following nitrification processes in strain JQ170 is proposed: NH4+-N to NO3--N in the cytoplasm; then NO3--N to NO2--N in the periplasmic space by Nap; finally, NO2--N secreted out of cells. Overall, this paper provides new insight towards understanding heterotrophic nitrification at the genetic level.


Assuntos
Nitrificação , Nitritos , Aerobiose , Bactérias , Desnitrificação , Processos Heterotróficos , Nitrogênio , Pseudomonas/genética
13.
Curr Microbiol ; 79(1): 19, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905083

RESUMO

A Gram stain-negative, aerobic, rod-shaped strain, designated HC19T, was isolated from heavy metals contaminated paddy soil. The 16S rRNA gene-based phylogenetic analysis indicated that strain HC19T belonged to the genus Pseudaminobacter, and shared 97.0% 16S rRNA gene sequence similarity with P. manganicus JH-7T, and less than 97% similarities with other type strains belonging to the genus. The major cellular fatty acids were C19:0 cyclo ω8c (55.0%) and C18: 1ω7c (18.7%). The major quinone was ubiquinone Q-10. The major polar lipids were phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine. The average nucleotide identity and digital DNA-DNA hybridization values between the genomes of HC19T and P. manganicus JH-7T were 68.0% and 22%, respectively. The G+C content of the genomic DNA was 63.3 mol%. On the basis of phenotypic, chemotaxonomic, and genotypic data, strain HC19T is considered as a novel species in the genus Pseudaminobacter, for which the name Pseudaminobacter. soli sp. nov. is proposed. The type strain is HC19T (= KCTC 82870T = CCTCC AB 2021107T).


Assuntos
Metais Pesados , Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Cancer Lett ; 492: 71-83, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860852

RESUMO

The blood vessel growth inhibitor bevacizumab targets vascular endothelial growth factor (VEGF), a crucial regulator of angiogenesis. Recently, small extracellular vesicles (sEVs) have been demonstrated to be important vehicles in the transport of growth factors to target cells. In this study, we isolated primary carcinoma-associated fibroblasts (CAFs) from four human oral squamous cell carcinoma (OSCC) specimens. Compared with other non-extracellular vesicle components, CAF-derived sEVs were found to be the main regulators of angiogenesis. The ability of CAF sEVs to activate VEGF receptor 2 (VEGFR2) signaling in human umbilical vein endothelial cells (HUVEC) was dependent on the association between sEVs and VEGF. In addition, sEV-bound VEGF secreted by CAFs further activated VEGFR2 signaling in HUVEC in a bevacizumab-resistant manner. VEGF was found to interact with heparan sulfate proteoglycans on the CAF sEV surface and could be released by heparinase I/III. The bioactivity of the dissociated VEGF was retained in vitro and in vivo and could be neutralized by bevacizumab. These findings suggest that the combined use of heparinase and bevacizumab might inhibit angiogenesis in patients with high levels of sEV-bound VEGF.


Assuntos
Bevacizumab/uso terapêutico , Fibroblastos Associados a Câncer/fisiologia , Vesículas Extracelulares/fisiologia , Neoplasias Bucais/irrigação sanguínea , Neovascularização Patológica/etiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/fisiologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Heparina Liase/farmacologia , Humanos , Neoplasias Bucais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia
15.
Mol Cancer ; 18(1): 175, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796058

RESUMO

OBJECTIVES: Carcinoma-associated fibroblasts (CAFs) have been known to promote cancer progression by modifying the primary tumor microenvironment. We aimed to elucidate the intercellular communication between CAFs and secondary organs in salivary adenoid cystic carcinoma (SACC) metastasis. METHODS: Pre-metastatic and metastatic animal models of SACC were established using extracellular vesicles (EVs) from CAFs and SACC cells. Lung fibroblasts (LFs) were treated with EVs and their transcriptomic alterations were identified by RNA sequencing. ITRAQ were performed to analyze EV cargos. TC I-15 was used to inhibit EV uptake by LFs and SACC lung metastasis in vivo. RESULTS: Here, we show that CAF EVs induced lung pre-metastatic niche formation in mice and consequently increased SACC lung metastasis. The pre-metastatic niche induced by CAF EVs was different from that induced by SACC EVs. CAF EVs presented a great ability for matrix remodeling and periostin is a potential biomarker characterizing the CAF EV-induced pre-metastatic niche. We found that lung fibroblast activation promoted by CAF EVs was a critical event at the pre-metastatic niche. Integrin α2ß1 mediated CAF EV uptake by lung fibroblasts, and its blockage by TC I-15 prevented lung pre-metastatic niche formation and subsequent metastasis. Plasma EV integrin ß1 was considerably upregulated in the mice bearing xenografts with high risk of lung metastasis. CONCLUSIONS: We demonstrated that CAF EVs participated in the pre-metastatic niche formation in the lung. Plasma EV integrin ß1 might be a promising biomarker to predict SACC metastasis at an early stage. An integrated strategy targeting both tumor and stromal cells is necessary to prevent SACC metastasis.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Microambiente Tumoral , Animais , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Integrina alfa2beta1/metabolismo , Camundongos , Modelos Biológicos , Metástase Neoplásica , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
16.
Proc Natl Acad Sci U S A ; 116(13): 5979-5984, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30858327

RESUMO

Extracellular vesicles (EVs) are important intercellular mediators regulating health and diseases. Conventional methods for EV surface marker profiling, which was based on population measurements, masked the cell-to-cell heterogeneity in the quantity and phenotypes of EV secretion. Herein, by using spatially patterned antibody barcodes, we realized multiplexed profiling of single-cell EV secretion from more than 1,000 single cells simultaneously. Applying this platform to profile human oral squamous cell carcinoma (OSCC) cell lines led to a deep understanding of previously undifferentiated single-cell heterogeneity underlying EV secretion. Notably, we observed that the decrement of certain EV phenotypes (e.g., CD63+EV) was associated with the invasive feature of both OSCC cell lines and primary OSCC cells. We also realized multiplexed detection of EV secretion and cytokines secretion simultaneously from the same single cells to investigate the multidimensional spectrum of cellular communications, from which we resolved tiered functional subgroups with distinct secretion profiles by visualized clustering and principal component analysis. In particular, we found that different cell subgroups dominated EV secretion and cytokine secretion. The technology introduced here enables a comprehensive evaluation of EV secretion heterogeneity at single-cell level, which may become an indispensable tool to complement current single-cell analysis and EV research.


Assuntos
Vesículas Extracelulares/metabolismo , Antígenos de Superfície/metabolismo , Comunicação Celular , Linhagem Celular Tumoral , Microambiente Celular , Humanos , Procedimentos Analíticos em Microchip
17.
Int J Radiat Oncol Biol Phys ; 96(3): 538-46, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27681750

RESUMO

PURPOSE: Radiation therapy for head and neck cancer commonly leads to radiation sialadenitis. Emerging evidence has indicated that phenylephrine pretreatment reduces radiosensitivity in the salivary gland; however, the underlying cytoprotective mechanism remains unclear. Nicotinamide phosphoribosyltransferase (NAMPT) is not only a key enzyme for the nicotinamide adenine dinucleotide salvage pathway, but also a cytokine participating in cell survival, metabolism, and longevity, with a broad effect on cellular functions in physiology and pathology. However, the regulatory events of NAMPT in response to the irradiated salivary gland are unknown. METHODS AND MATERIALS: The cell viability of primary cultured submandibular gland cells was determined using the PrestoBlue assay. NAMPT expression was measured using reverse transcriptase polymerase chain reaction and Western blotting in vitro and in vivo. Silent information regulator 1 (SIRT1) and phosphorylated Akt protein levels were examined by Western blotting. The cellular locations of NAMPT and SIRT1 were detected by immunohistochemistry. NAMPT promoter activity was assessed using the luciferase reporter gene assay. RESULTS: NAMPT was mainly distributed in the cytoplasm of granular convoluted tubule cells and ductal cells in normal submandibular glands. mRNA and protein expression of NAMPT was downregulated after radiation but upregulated with phenylephrine pretreatment both in vivo and in vitro. Moreover, the protein expression of phosphorylated Akt and SIRT1 was decreased in irradiated glands, and phenylephrine pretreatment restored the expression of both. SIRT1 was mainly located in the cell nucleus and cytoplasm in the normal submandibular gland. Phenylephrine dramatically enhanced the expression of SIRT1, which was significantly reduced by radiation. Furthermore, phenylephrine induced a marked increase of NAMPT promoter activity. CONCLUSIONS: These findings reveal the regulatory mechanisms of NAMPT expression, which help to understand the mechanism of the cytoprotective role of phenylephrine on irradiated tissues.


Assuntos
Sobrevivência Celular/efeitos da radiação , Nicotinamida Fosforribosiltransferase/biossíntese , Fenilefrina/administração & dosagem , Protetores contra Radiação/administração & dosagem , Glândula Submandibular/fisiopatologia , Glândula Submandibular/efeitos da radiação , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Feminino , Masculino , Doses de Radiação , Ratos , Ratos Wistar , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/enzimologia , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos
18.
PLoS One ; 11(3): e0150247, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26954362

RESUMO

Carcinoma-associated fibroblasts (CAFs) are critical in determining tumor invasion and metastasis. However the role of CAFs in the invasion of salivary gland adenoid cystic carcinoma (ACC) is poorly understood. In this study, we isolated primary CAFs from two ACC patients. ACC-derived CAFs expressed typical CAF biomarkers and showed increased migration and invasion activity. Conditioned medium collected from CAFs significantly promoted ACC cell migration and invasion. Co-culture of CAFs with ACC cells in a microfluidic device further revealed that CAFs localized at the invasion front and ACC cells followed the track behind the CAFs. Interfering of both matrix metalloproteinase and CXCL12/CXCR4 pathway inhibited ACC invasion promoted by CAFs. Overall, our study demonstrates that ACC-derived CAFs exhibit the most important defining feature of CAFs by promoting cancer invasion. In addition to secretion of soluble factors, CAFs also lead ACC invasion by creating an invasive track in the ECM.


Assuntos
Carcinoma Adenoide Cístico/metabolismo , Movimento Celular , Fibroblastos/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Carcinoma Adenoide Cístico/patologia , Linhagem Celular Tumoral , Quimiocina CXCL12/metabolismo , Técnicas de Cocultura , Feminino , Fibroblastos/patologia , Gelatinases/metabolismo , Humanos , Masculino , Invasividade Neoplásica , Proteínas de Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Neoplasias das Glândulas Salivares/patologia
19.
Exp Ther Med ; 11(1): 335-337, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26889264

RESUMO

Sialolithiasis is a common disease that is characterized by the obstruction of the salivary gland. Sialolithiasis mainly affects the submandibular glands and the Wharton's duct. However, bilateral sialolithiasis is a rare condition. In addition, recurrence of sialoliths subsequent to surgical excision of the submandibular gland for the treatment of sialolithiasis has been rarely reported. The present study reported a case presenting with recurrent sialoliths with sialadenitis in the residual Wharton's duct following the excision of bilateral submandibular glands. An 81-year-old man presented with a solid and painful mass in the left submandibular area. The patient had a history of bilateral submandibular sialolithiasis, and had undergone excision of bilateral submandibular glands with the right Wharton's duct 4 years earlier. Computed tomography scans demonstrated two calculi in the residual Wharton's duct, which were surgically removed without any complications. The present study discussed the mechanisms underlying sialolith formation subsequent to the excision of submandibular glands.

20.
Radiat Res ; 183(6): 693-700, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25950818

RESUMO

Radiotherapy for malignant tumors of the head and neck commonly leads to radiation-induced sialadenitis as a result of radiation-induced salivary gland dysfunction. We demonstrated previously that phenylephrine could protect the irradiated submandibular gland against apoptosis, although the mechanism is unclear. In this study, we investigated the influence of phenylephrine pretreatment on the expressions of aquaporin 5 (AQP5) and c-Jun N-terminal kinase (JNK) that were presumed to have a role in radiation-induced salivary gland dysfunction. Rats pretreated with phenylephrine (5 mg/kg) were locally irradiated (20 Gy) in the head and neck region. The submandibular glands were removed on day 7 after irradiation. The expression of AQP5 and activation of JNK were measured by immunohistochemistry and Western blot. The localization of AQP5 at the apical and lateral plasma membrane of acinar cells was significantly reduced by irradiation, but markedly enhanced with phenylephrine pretreatment. The protein expression of AQP5 was decreased by 84.91% in irradiated glands, whereas it was fully recovered to the control level in phenylephrine-pretreated glands. Moreover, many acinar, ductal and granular convoluted tubular cells in the irradiated glands exhibited intense immunoreactivity for p-JNK, while in the phenylephrine-pretreated irradiated glands, only a few acinar cells exhibited very faint immunoreactivity for p-JNK. The protein expression level of p-JNK was increased by 41.65% in the irradiated alone glands, but was significantly decreased in the phenylephrine-pretreated irradiated glands. These results suggest that the protective mechanism of phenylephrine might be related to the improved expression of AQP5 and decreased activation of JNK. Pretreatment with phenylephrine in patients undergoing radiotherapy may provide a helpful strategy for suppression of radiation-induced sialadenitis.


Assuntos
Aquaporina 5/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fenilefrina/farmacologia , Protetores contra Radiação/farmacologia , Glândula Submandibular/efeitos dos fármacos , Glândula Submandibular/efeitos da radiação , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/efeitos da radiação , Masculino , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/efeitos da radiação , Fosfoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Ratos , Ratos Wistar , Glândula Submandibular/metabolismo , Glândula Submandibular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...