Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 624: 79-87, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660913

RESUMO

Graphitic carbon nitride (g-C3N4) is considered as a promising low-cost polymeric semiconductor as conjugated photocatalyst for energy and environmental application. This study exhibits a Na-doped g-C3N4 with willow-leaf-shaped structure and high degree of crystallinity, which was synthesized with a convenient thermal polymerization using sodium carbonate (Na2CO3) as the sodium source. The π-conjugated systems of g-C3N4 were improved by doping sodium, which could accelerate the electron transport efficiency resulting in outstanding photocatalytic properties. Furthermore, optimum Na-doped g-C3N4 (CN-0.05) attributed its enhanced irradiation efficiency of light energy to its narrower band gap and significant improvement in charge separation. Consequently, the H2 evolution rate catalyzed with CN-0.05 can achieve 3559.8 µmol g-1 h-1, which is about 1.9 times higher than that with pristine g-C3N4. The rate of CN-0.05 for reduction of CO2 to CO (3.66 µmol g-1 h-1) is 6.6 times higher than that of pristine g-C3N4. In experiments of pollutants degradation, the reaction constants of degradation of rhodamine B (RhB) and methyl orange (MO) with CN-0.05 were 0.0271 and 0.0101 min-1, respectively, which are 4.7 and 7.2 times more efficient than pristine g-C3N4, respectively. This work provides a simple preparation method for tailoring effective photocatalyst for the sustainable solution of environmental issues.

2.
Molecules ; 27(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35566056

RESUMO

A titanate nanotube catalyst for ozonation was synthesized with a simple one-step NaOH hydrothermal treatment without energy-consuming calcination. The synthesized titania catalysts were characterized by X-ray diffraction (XRD), Raman, porosimetry analysis, high-resolution transmission electron microscopy (HR-TEM), Fourier transformed infrared (FTIR), and electron paramagnetic resonance (EPR) analysis. The catalyst treated with a higher concentration of NaOH was found to be more catalytically active for phenol removal due to its higher titanate content that would facilitate more OH groups on its surface. Furthermore, the main active oxidizing species of the catalytic ozonation process were recognized as singlet oxygen and superoxide radical, while the hydroxyl radical may only play a minor role. This work provides further support for the correlation between the properties of titania and catalytic performance, which is significant for understanding the mechanism of catalytic ozonation with titania-based materials.


Assuntos
Ozônio , Poluentes Químicos da Água , Catálise , Radical Hidroxila , Ozônio/análise , Fenol/análise , Hidróxido de Sódio , Poluentes Químicos da Água/análise
3.
ACS Omega ; 7(17): 14944-14951, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557660

RESUMO

Hydrogen, as a noncarbon energy source, plays a significant role in future clean energy vectors. However, concerns about the safe storage and transportation of hydrogen gas limit its wide application. Featured with high H2 volumetric density, nontoxicity, and nonflammability, formic acid (FA) is regarded as one of the most encouraging chemical hydrogen carriers. The search for heterogeneous catalysts with decent catalytic activity and stability for FA decomposition is one of the hottest research topics in this area. In this paper, three weakly basic resins with different functional groups, including D201 with -N+(CH3)3, D301 with -N(CH3)2, and D311 with -NH2, were investigated as alternative catalyst supports for Pd catalysts. The prepared basic resin-supported Pd catalysts were evaluated for the FA dehydrogenation reaction under atmospheric pressure and temperatures ranging from 30 to 70 °C. The results showed that the catalytic activity of the three different resin-supported Pd catalysts follows the order of Pd/D201 > Pd/D301 > Pd/D311. Particularly, a high turnover frequency value of 547.6 h-1 was achieved when employing Pd/D201 as the FA dehydrogenation reaction catalyst at 50 °C. The apparent activation energies for the three different Pd/resin catalysts were calculated, of which the Pd/D210 catalyst demonstrates the lowest activation energy of 42.9 kJ mol-1. The reasons for the superior catalytic behavior, together with the reaction mechanism, were then investigated and illustrated.

4.
Analyst ; 145(9): 3283-3288, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32253397

RESUMO

In this research, a novel manganese dioxide nanorod-anchored graphene oxide (MnO2 NRs/GO) composite was synthesized by a simple hydrothermal method for electrochemical sensing application. A highly sensitive electrochemical sensor for dopamine (DA) was constructed by modifying glassy carbon electrode (GCE) with MnO2 NRs/GO. The morphology and performance of the composite material and modified GCEs were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV), respectively. The resultant MnO2 NRs/GO composite has a large electroactive area and shows excellent electrochemical activity toward DA. Under the optimal conditions, the DA sensor shows a linear response in the DA concentration ranges of 0.1 µM-0.08 mM and 0.08-0.41 mM with a low detection limit of 0.027 µM and a high sensitivity of 602.4 µA·mM-1·cm-2. The MnO2 NRs/GO composite provides a promising platform for the construction of a highly sensitive and selective sensor of DA.


Assuntos
Dopamina/análise , Técnicas Eletroquímicas/métodos , Grafite/química , Compostos de Manganês/química , Nanocompostos/química , Nanotubos/química , Óxidos/química , Dopamina/sangue , Dopamina/química , Eletrodos , Humanos , Limite de Detecção , Oxirredução , Reprodutibilidade dos Testes
5.
Molecules ; 24(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466335

RESUMO

A self-supported CuO/Cu nanowire electrode (CuO/CuNWE), which was prepared by annealing Cu nanowires to form a porous Cu nanowire electrode (CuNWE) and then anodizing the as-prepared CuNWE in alkaline medium to generate Cu(OH)2 nanowires followed by calcination, was employed for chemical oxygen demand (COD) determination using cyclic voltammetry (CV). The structure and electrochemical behavior of the CuO/CuNWE were investigated by scanning electron microscopy, X-ray diffraction, and CV. The results indicated that the as-synthesized CuO/CuNWE, in which CuO nanowires with a length of several micrometers and a diameter of 100 to 300 nm could be found, was stable in alkaline medium and more electrocatalytically active for oxidizing a wide range of organic compounds in comparison with the CuNWE. Under optimized alkaline concentration and scan rate, the CuO/CuNWE exhibited a good performance for COD measurement, with a linear range of 5 to 1153 mg L-1, a sensitivity of 2.46× 10-2 mA /(mg L-1), and a detection limit of about 2.3 mg L-1. In addition, an excellent correlation was observed in COD values obtained by our method and the classic dichromate method (r = 0.9995, p < 0.01, n = 11). Finally, our method was successfully used to measure the COD values in real water samples, showing great potential for practical application in water pollution control.


Assuntos
Análise da Demanda Biológica de Oxigênio/instrumentação , Nanofios/química , Técnicas Biossensoriais/instrumentação , Cobre/química , Eletrodos
6.
RSC Adv ; 9(38): 22045-22052, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35518881

RESUMO

Nitrogen co-doping with ruthenium mesoporous carbons (Ru-N-MC) was prepared by co-impregnation of sucrose and urea on a RuCl3/SiO2 template followed by a thermal carbonization process. The turnover frequency (TOF) of the Ba/Ru-N-MC catalyst in ammonia synthesis is 0.16 s-1 under reaction conditions of 400 °C, pressure of 10 MPa and space velocity of 10 000 h-1. The superior catalytic performance of the Ba/Ru-N-MC is proposed to originate from the strong metal-support interaction between Ru nanoparticles (NPs) and carbon support. In addition to the activity, the Ba/Ru-N-MC catalyst exhibits a long-term stability for 35 h without significant deactivation.

7.
Water Sci Technol ; 74(7): 1744-1751, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27763355

RESUMO

The adsorption behavior of pharmaceuticals and personal care product, Bisphenol-A (BPA), according to four coal-based and four wood-based granular activated carbons modified using outgassing treatment, acidic treatment or alkaline treatment was studied. The adsorption isotherm results indicated that carbon surface acidity played a very important role in the adsorption of BPA. It was found that increasing surface acidity would increase the hydrogen bonding effects and increase adsorption of BPA on activated carbon. The acidic modified sample (F600-A and OLC-A) represented the best adsorption capacity, and the equilibrium adsorption amounts reached 346.42 and 338.55 mg/g, respectively. Further, effects of surface charge and surface basicity were examined. It was found that the adsorbed amount of BPA decreased with the increase of surface charge. Finally, there appeared to be a significant oligomerization phenomenon with BPA molecules onto the surface of activated carbon. OLC and OLC-OG, which have higher micropore percentages, are very effective in hampering the oligomerization of BPA under oxic conditions.


Assuntos
Compostos Benzidrílicos/química , Carvão Vegetal/química , Fenóis/química , Poluentes Químicos da Água/química , Adsorção , Carvão Mineral , Concentração de Íons de Hidrogênio , Madeira
8.
Water Res ; 73: 353-61, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25697697

RESUMO

This study investigated the mechanistic effects of basic pH and the presence of high carbonate concentration on the TiO2 photocatalytic degradation of the cyanobacterial toxin cylindrospermopsin (CYN). High-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS) was employed for the identification of reaction byproducts. The reaction pathways were proposed based on the identified degradation byproducts and radical chemistry. In high pH system (pH = 10.5) similar reaction byproducts as those in neutral pH system were identified. However, high pH appeared to inhibit sulfate elimination with less sulfate elimination byproducts detected. In the presence of carbonate in the photocatalytic process, hydroxyl radical reaction would be largely inhibited since carbonate ion would react with hydroxyl radical to form carbonate radical. The second order rate constant of carbonate radical with CYN was estimated to be 1.4 × 10(8) M(-1)s(-1), which is much smaller than that of hydroxyl radical. However, the more significant abundance of carbonate radical in the reaction solution strongly contributed to the transformation of CYN. Carbonate radical has higher reaction selectivity than hydroxyl radical and hence, played a different role in the photocatalytic reaction. It would promote the formation of byproduct m/z 420.12 which has not been identified in the other two studied photocatalytic systems. Besides, the presence of carbonate ion may hinder the removal of toxicity originated from uracil moiety due to the low reaction activity of carbonate radical with uracil moiety in CYN molecule. This work would further support the application of photocatalytic technologies for CYN treatment and provide fundamental information for the complete assessment of CYN removal by using TiO2 photocatalysis process.


Assuntos
Carbonatos/análise , Fotólise , Titânio/química , Uracila/análogos & derivados , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química , Alcaloides , Toxinas Bacterianas , Cromatografia Líquida de Alta Pressão , Toxinas de Cianobactérias , Concentração de Íons de Hidrogênio , Espectrometria de Massas em Tandem , Uracila/química
9.
J Hazard Mater ; 280: 723-33, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25238189

RESUMO

Carbon, nitrogen and sulfur (C, N and S) doped mesoporous anatase-brookite nano-heterojunction titania photocatalysts have been synthesized through a simple sol-gel method in the presence of triblock copolymer Pluronic P123. XRD and Raman spectra revealed the formation of anatase and brookite mixed phases. XPS spectra indicated the presence of C, N and S dopants. The TEM images demonstrated the formation of almost monodisperse titania nanoparticles with particle sizes of approximately 10nm. N2 isotherm measurements confirmed that both doped and undoped titania anatase-brookite materials have mesoporous structure. The photocatalytic degradation of the cyanotoxin microcystin-LR (MC-LR) has been investigated using these novel nanomaterials under visible light illumination. The photocatalytic efficiency of the mesoporous titania anatase-brookite photocatalyst dramatically increased with the addition of the C, N and S non-metal, achieving complete degradation (∼ 100 %) of MC-LR. The results demonstrate the advantages of the synthetic approach and the great potential of the visible light activated C, N, and S doped titania photocatalysts for the treatment of organic micropollutants in contaminated waters under visible light.


Assuntos
Microcistinas/química , Fotólise , Titânio/química , Poluentes Químicos da Água/química , Carbono/química , Luz , Microcistinas/efeitos da radiação , Nitrogênio/química , Enxofre/química , Poluentes Químicos da Água/efeitos da radiação
10.
Environ Sci Technol ; 48(8): 4495-504, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24625255

RESUMO

The degradation of cylindrospermopsin (CYN), a widely distributed and highly toxic cyanobacterial toxin (cyanotoxin), remains poorly elucidated. In this study, the mechanism of CYN destruction by UV-254 nm/H2O2 advanced oxidation process (AOP) was investigated by mass spectrometry. Various byproducts identified indicated three common reaction pathways: hydroxyl addition (+16 Da), alcoholic oxidation or dehydrogenation (-2 Da), and elimination of sulfate (-80 Da). The initiation of the degradation was observed at the hydroxymethyl uracil and tricyclic guanidine groups; uracil moiety cleavage/fragmentation and further ring-opening of the alkaloid were also noted at an extended reaction time or higher UV fluence. The degradation rates of CYN decreased and less byproducts (species) were detected using natural water matrices; however, CYN was effectively eliminated under extended UV irradiation. This study demonstrates the efficiency of CYN degradation and provides a better understanding of the mechanism of CYN degradation by hydroxyl radical, a reactive oxygen species that can be generated by most AOPs and is present in natural water environment.


Assuntos
Toxinas Bacterianas/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Toxinas Marinhas/química , Microcistinas/química , Uracila/análogos & derivados , Alcaloides/química , Toxinas Bacterianas/efeitos da radiação , Biodegradação Ambiental/efeitos da radiação , Toxinas de Cianobactérias , Filtração , Radical Hidroxila/efeitos da radiação , Cinética , Toxinas Marinhas/efeitos da radiação , Microcistinas/efeitos da radiação , Ohio , Oxirredução/efeitos da radiação , Dióxido de Silício/química , Sulfatos/química , Raios Ultravioleta , Uracila/química , Uracila/efeitos da radiação , Qualidade da Água
11.
J Hazard Mater ; 170(1): 163-8, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19482421

RESUMO

The photochemistry of para-chlorophenol (4-CP) under UV irradiation by using a 125-W high-pressure mercury lamp as light source with the presence of nitrite in a solid water ice matrix had been studied. The experiments were carried out in a photochemical cold chamber reactor at -14 to -12 degrees C. Each influence factor of the 4-CP photoconversion kinetics in the water ice was inspected. The results show that the 4-CP photoconversion obeys the first-order kinetics model and the initial concentration of 4-CP, the initial concentration of nitrite, pH value, light intensity, inorganic ions and the water quality all have significant influence on the photoconversion rate. In addition, nine intermediate products were characterized by GC-MS, HPLC-ESI-MS and HPLC techniques and the possible photoconversion mechanism was proposed accordingly. It is concluded that the mechanism and photoproducts of 4-CP photolysis in ice are changed due to the presence of NO(2)(-).


Assuntos
Clorofenóis/química , Nitritos/química , Fotólise , Temperatura Baixa , Gelo , Cinética , Raios Ultravioleta , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...