Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 256: 112574, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677004

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer, which owned severe resistance to platinum-based anticancer agents. Herein, we report a new metal-arene complex, Ru-TPE-PPh3, which can be synthesized in vitro and in living cells with copper catalyzed the cycloaddition reaction of Ru-azide and alkynyl (CuAAC). The complex Ru-TPE-PPh3 exhibited superior inhibition of the proliferation of TNBC MDA-MB-231 cells with an IC50 value of 4.0 µM. Ru-TPE-PPh3 could induce the over production of reactive oxygen species (ROS) to initiate the oxidative stress, and further damage the mitochondria both functionally and morphologically, as loss of mitochondrial membrane potential (MMP) and cutting the supply of adenosine triphosphate (ATP), the disappearance of cristae structure. Moreover, the damaged mitochondria evoked the occurrence of mitophagy with the autophagic flux blockage and cell death. The complex Ru-TPE-PPh3 also demonstrated excellent anti-proliferative activity in 3D MDA-MB-231 multicellular tumor spheroids (MCTSs), indicating the potential to inhibit solid tumors in living cells. This study not only provided a potent agent for the TNBC treatment, but also demonstrated the universality of the bioorthogonally catalyzed lethality (BCL) strategy through CuAAC reation.


Assuntos
Antineoplásicos , Autofagia , Complexos de Coordenação , Mitocôndrias , Espécies Reativas de Oxigênio , Rutênio , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Potencial da Membrana Mitocondrial/efeitos dos fármacos
2.
Bioorg Chem ; 147: 107325, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583247

RESUMO

Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage. These damages could evoke the cancer cell death with the mitochondrial-relevant apoptosis and autophagy. 3D tumor spheroids experiment demonstrates that Ir2 owned superior antiproliferation performance, as the potent anticancer agent in vivo. This study not only provided a new path for dual inhibition of both mitochondrial OXPHOS and glycolytic metabolisms with a novel α-TOS-functionalized metallodrug, but also further demonstrated that the mitochondrial-relevant therapy could be effective in enhancing the anticancer performance.


Assuntos
Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Glicólise , Fosforilação Oxidativa , Humanos , Fosforilação Oxidativa/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Animais , Irídio/química , Irídio/farmacologia , Relação Estrutura-Atividade , Espécies Reativas de Oxigênio/metabolismo , Relação Dose-Resposta a Droga , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Camundongos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
3.
Chem Sci ; 13(5): 1428-1439, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35222927

RESUMO

Metallodrug resistance has attracted a great deal of attention in cancer treatment. According to the cisplatin (cis-Pt) anticancer mechanism, a new strategy to overcome cis-Pt resistance through mitochondrial dysfunction is proposed. Two mitochondria-targeted aggregation-induced emission fluorogens (AIEgens) were first synthesized, named DP-PPh3 and TPE-PPh3, which showed superior capacities to overcome the cis-Pt resistance of lung cancer cells (A549R) by the alteration of drug metabolism (up-regulation of influx CTR1 and down-regulation of efflux MRP2) and blockage of autophagic flux (failure of the degradation of autophagosomes). This study is the first time that AIEgens are utilized in the treatment of cis-Pt resistant cancer cells. Moreover, the underlying molecular mechanism was fully revealed. Triphenylphosphonium (PPh3)-decorated AIEgens DP-PPh3 and TPE-PPh3 not only successfully realized aggregation and the imaging of mitochondria in A549R cells, but also activated cytotoxicity towards A549R cells. DP-PPh3 and TPE-PPh3 could induce ROS production, disrupt the mitochondrial structure, and impair mitochondrial and glycolytic metabolism. Furthermore, the anticancer efficacy of these drugs was demonstrated in 3D multicellular tumor spheroids (MCTSs) of A549R cells in vitro and in tumor-bearing nude mice in vivo. This AIE-PPh3 strategy not only promoted cytotoxicity towards cancer cells but also provided a new pathway for the treatment of metallodrug resistance.

4.
J Inorg Biochem ; 226: 111653, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740039

RESUMO

Theranostic anticancer agents with dual functions of diagnosis and therapy are in highly demand for breast cancer. Herein, a triphenylphosphonium (TPP)-decorated aggregation-induced emission (AIE)-based Pt(IV) prodrug ACPt was developed, which exhibited superior anticancer performance with novel anticancer mechanism of dual modulation of apoptosis and autophagy inhibition. The experimental data showed that ACPt induced increased reactive oxygen species (ROS), and decreased mitochondrial membrane potential (MMP). The morphology and function of mitochondria were also severely damaged and ACPt showed strong inhibition to both mitochondrial and glycolytic bioenergetics. Moreover, DNA damage and cell cycle arrest in the S-phase were also observed after the ACPt treatment, eventually leading to the apoptosis and autophagy inhibition of cancer cells. Furthermore, ACPt also indicated excellent anti-proliferation activity in 3D multicellular tumor spheroids (MCTSs), suggesting the potential to inhibit solid tumors in vivo. Our observation demonstrated that ACPt could serve as a promising anticancer theranostic agent toward breast cancers for prodrug activation monitoring and image-guided chemotherapy.


Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama , Complexos de Coordenação , Sistemas de Liberação de Medicamentos , Mitocôndrias/metabolismo , Platina , Pró-Fármacos , Células A549 , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/farmacocinética , Complexos de Coordenação/farmacologia , Feminino , Células Hep G2 , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Platina/química , Platina/farmacocinética , Platina/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia
5.
Front Med (Lausanne) ; 8: 745676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671625

RESUMO

In mainland China, there remains a shortage of pediatric drugs. The Chinese government has recently launched policies and incentives to encourage pediatric drug development and clinical trials. However, data on the characteristics or development trends of these trials are limited. In this review, we extracted source data from the Chinese Clinical Trials Registry and Information Transparency Platform and systematically reviewed the pediatric clinical trials conducted in mainland China from 2009 to 2020, a comprehensive process evaluation of the pediatric drug clinical trials development in the past decade, providing data support to policy makers and industry stakeholders. We included 487 pediatric clinical trials. Over the past decade, the number of pediatric trials has increased, especially since 2016. The most common therapeutic areas were infectious diseases (n = 108, 22.2%), agents for preventive purpose (n = 99, 20.3%), and neurological and psychiatric diseases (n = 71, 14.6%). The number of clinical trials involving epilepsy (39, 10.1%), asthma (33, 8.5%), and influenza (24, 6.2%) were the highest. The distribution of leading institutions is unbalanced in mainland China, with most units in East China (34.0%) and few in Southwest China (6.9%). China has made progress in improving the research and development environment of pediatric drugs and increasing pediatric trials. However, a wide gap in pediatric drug development and clinical trials quality exists between China and the developed countries. The pharmaceutical industry in China has faced grim setbacks, including study duplication, lack of innovation, poor research design, and unbalanced resource allocation. Thus, we suggest that the Chinese government should adjust their policies to improve innovation and clinical design capacity, and optimize resource allocation between regions.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32850708

RESUMO

Data quality control and preprocessing are often the first step in processing next-generation sequencing (NGS) data of tumors. Not only can it help us evaluate the quality of sequencing data, but it can also help us obtain high-quality data for downstream data analysis. However, by comparing data analysis results of preprocessing with Cutadapt, FastP, Trimmomatic, and raw sequencing data, we found that the frequency of mutation detection had some fluctuations and differences, and human leukocyte antigen (HLA) typing directly resulted in erroneous results. We think that our research had demonstrated the impact of data preprocessing steps on downstream data analysis results. We hope that it can promote the development or optimization of better data preprocessing methods, so that downstream information analysis can be more accurate.

7.
PLoS One ; 10(6): e0129172, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26046360

RESUMO

Nanoparticle uptake and distribution to solid tumors are limited by reticuloendothelial system systemic filtering and transport limitations induced by irregular intra-tumoral vascularization. Although vascular enhanced permeability and retention can aid targeting, high interstitial fluid pressure and dense extracellular matrix may hinder local penetration. Extravascular diffusivity depends upon nanoparticle size, surface modifications, and tissue vascularization. Gold nanoparticles functionalized with biologically-compatible layers may achieve improved uptake and distribution while enabling cytotoxicity through synergistic combination of chemotherapy and thermal ablation. Evaluation of nanoparticle uptake in vivo remains difficult, as detection methods are limited. We employ hyperspectral imaging of histology sections to analyze uptake and distribution of phosphatidylcholine-coated citrate gold nanoparticles (CGN) and silica-gold nanoshells (SGN) after tail-vein injection in mice bearing orthotopic pancreatic adenocarcinoma. For CGN, the liver and tumor showed 26.5 ± 8.2 and 23.3 ± 4.1 particles/100 µm2 within 10 µm from the nearest source and few nanoparticles beyond 50 µm, respectively. The spleen had 35.5 ± 9.3 particles/100 µm2 within 10 µm with penetration also limited to 50 µm. For SGN, the liver showed 31.1 ± 4.1 particles/100 µm2 within 10 µm of the nearest source with penetration hindered beyond 30 µm. The spleen and tumor showed uptake of 22.1 ± 6.2 and 15.8 ± 6.1 particles/100 µm2 within 10 µm, respectively, with penetration similarly hindered. CGH average concentration (nanoparticles/µm2) was 1.09 ± 0.14 in the liver, 0.74 ± 0.12 in the spleen, and 0.43 ± 0.07 in the tumor. SGN average concentration (nanoparticles/µm2) was 0.43 ± 0.07 in the liver, 0.30 ± 0.06 in the spleen, and 0.20 ± 0.04 in the tumor. Hyperspectral imaging of histology sections enables analysis of phosphatidylcholine-coated gold-based nanoparticles in pancreatic tumors with the goal to improve nanotherapeutic efficacy.


Assuntos
Adenocarcinoma/patologia , Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Neoplasias Pancreáticas/patologia , Fosfatidilcolinas/química , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Feminino , Ouro/química , Ouro/farmacocinética , Humanos , Fígado/metabolismo , Nanopartículas Metálicas/química , Camundongos SCID , Nanoconchas/administração & dosagem , Nanoconchas/química , Neoplasias Pancreáticas/metabolismo , Tamanho da Partícula , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Espectrofotometria/métodos , Baço/metabolismo , Distribuição Tecidual , Transplante Heterólogo
8.
J Colloid Interface Sci ; 441: 10-6, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484195

RESUMO

HYPOTHESIS: A facile, dialysis-based synthesis of stable near infrared (nIR) absorbing plasmonic gold nanoparticles (λmax=650-1000 nm) will increase the yield of nIR particles and reduce the amount of gold colloid contaminant in the product mixture. EXPERIMENTS: Chloroauric acid and sodium thiosulfate were reacted using a dialysis membrane as a reaction vessel. Product yield and composition was determined and compared to traditional synthesis methods. The product particle distribution, yield, and partitioning of gold between dispersed product and membrane-adsorbed gold were determined. FINDINGS: The synthesis results in polydisperse particle suspensions comprised of 70% spheroid-like particles, 27% triangular plates, and 3% rod-like structures with a 3% batch-to-batch variation and a prominent nIR absorption band with λmax=650-1000 nm. The amount of small gold colloid (λmax=530 nm; d<10 nm) in the isolated product was reduced by 96% compared to traditional methods. Additionally, 91.1% of the gold starting material is retained in the solution-based nanoparticle mixture while 8.2% is found on the dialysis membrane. The synthesis results in a quality ratio (QR=Abs(nIR)/Abs(530)) of 1.7-2.4 (twice that of previous techniques) and 14.3 times greater OD∗ml yield of the nIR-absorbing nanoparticle fraction.


Assuntos
Ouro/química , Raios Infravermelhos , Nanopartículas Metálicas , Coloides/química , Diálise , Membranas Artificiais , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Propriedades de Superfície
9.
Int J Nanomedicine ; 8: 3603-17, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124360

RESUMO

Nano-scale particles sized 10-400 nm administered systemically preferentially extravasate from tumor vasculature due to the enhanced permeability and retention effect. Therapeutic success remains elusive, however, because of inhomogeneous particle distribution within tumor tissue. Insufficient tumor vascularization limits particle transport and also results in avascular hypoxic regions with non-proliferating cells, which can regenerate tissue after nanoparticle-delivered cytotoxicity or thermal ablation. Nanoparticle surface modifications provide for increasing tumor targeting and uptake while decreasing immunogenicity and toxicity. Herein, we created novel two layer gold-nanoshell particles coated with alkanethiol and phosphatidylcholine, and three layer nanoshells additionally coated with high-density-lipoprotein. We hypothesize that these particles have enhanced penetration into 3-dimensional cell cultures modeling avascular tissue when compared to standard poly(ethylene glycol) (PEG)-coated nanoshells. Particle uptake and distribution in liver, lung, and pancreatic tumor cell cultures were evaluated using silver-enhancement staining and hyperspectral imaging with dark field microscopy. Two layer nanoshells exhibited significantly higher uptake compared to PEGylated nanoshells. This multilayer formulation may help overcome transport barriers presented by tumor vasculature, and could be further investigated in vivo as a platform for targeted cancer therapies.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Neoplasias Experimentais/química , Neovascularização Patológica/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Difusão , Humanos , Distribuição Tecidual
10.
Int J Nanomedicine ; 8: 2153-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23818775

RESUMO

Gold nanoparticles and near infrared-absorbing light are each innocuous to tissue but when combined can destroy malignant tissue while leaving healthy tissue unharmed. This study investigated the feasibility of photothermal ablation therapy for esophageal adenocarcinoma using chitosan-coated gold/gold sulfide (CS-GGS) nanoparticles. A rat esophagoduodenal anastomosis model was used for the in vivo ablation study, and three human esophageal cell lines were used to study the response of cancer cells and benign cells to near infrared light after treatment with CS-GGS. The results indicate that both cancerous tissue and cancer cells took up more gold nanoparticles and were completely ablated after exposure to near infrared light. The benign tissue and noncancerous cells showed less uptake of these nanoparticles, and remained viable after exposure to near infrared light. CS-GGS nanoparticles could provide an optimal endoluminal therapeutic option for near infrared light ablation of esophageal cancer.


Assuntos
Adenocarcinoma , Antineoplásicos/farmacologia , Morte Celular , Neoplasias Esofágicas , Ouro/farmacologia , Nanopartículas Metálicas/química , Técnicas de Ablação , Animais , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ouro/química , Humanos , Raios Infravermelhos , Ratos , Ratos Sprague-Dawley
11.
Nanomedicine ; 9(8): 1214-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23603356

RESUMO

Gold nanoparticles (GNPs) with near infrared (NIR) plasmon resonance have been promisingly used in photothermal cancer therapy as a less invasive treatment. Recombinant Protein-G (ProG) was PEGylated to act as a cofactor to immobilize immunoglobulins (IgGs) on GNPs by the Fc region, resulting in optimal orientation of IgGs for efficient cancer targeting. In-vitro studies showed that HER-2 overexpressing breast cancer cells, SK-BR-3, were efficiently targeted and ablated at a laser power of 900 J/cm(2) (5 W/cm(2) for 3 min). However, as a means of enhancing treatment efficacy by increasing cellular sensitivity to chemotherapeutic agents, we showed that GNP exposure to lower power laser resulted in small disruptions of cell membrane due to localized hyperthermia. This did not lead to cell death but provided a mechanism for killing cancer cells by providing enhanced uptake of drug molecules thus leading to a new avenue for hyperthermia-anticancer drug combined cancer therapeutics. FROM THE CLINICAL EDITOR: PEGylated recombinant Protein-G was used as a cofactor to optimize the orientation of IgGs providing "target seeking" properties to gold nanoparticles used in photothermal cancer therapy. The system demonstrated excellent properties in cancer therapy, with the hope and expectation of future clinical translation.


Assuntos
Anticorpos Imobilizados/imunologia , Neoplasias da Mama/terapia , Ouro/uso terapêutico , Nanopartículas/uso terapêutico , Receptor ErbB-2/imunologia , Anticorpos Imobilizados/química , Antineoplásicos/uso terapêutico , Proteínas de Bactérias/química , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Ouro/química , Humanos , Hipertermia Induzida , Imunoglobulina G/química , Imunoglobulina G/imunologia , Terapia a Laser , Nanopartículas/química , Polietilenoglicóis/química , Proteínas Recombinantes/química
12.
Nanoscale Res Lett ; 7(1): 337, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22726762

RESUMO

In the quest for producing an effective clinically relevant therapeutic agent, scalability, repeatability, and stability are paramount. In this paper, gold nanoparticles (GNPs) with precisely controlled near infrared (NIR) absorption are synthesized by a single step reaction of HAuCl4 and Na2S2O3, without assistance of additional templates, capping reagents or seeds. The anisotropy in the shape of gold nanoparticles offers high NIR absorption making it therapeutically relevant. The synthesized products consist of GNPs with different shape and size, including small spherical colloid gold particles and non-spherical gold crystals. The NIR absorption wavelengths and particle size increase with increasing molar ratio of HAuCl4/Na2S2O3. Non-spherical gold particles can be further purified and separated by centrifugation to improve the NIR absorbing fraction of particles. In-depth studies reveal that GNPs with good structural and optical stability only form in a certain range of the HAuCl4/Na2S2O3 molar ratio, whereas higher molar ratios result in unstable GNPs, which lose their NIR absorption peak due to decomposition and reassembly via Ostwald ripening. Tuning the optical absorption of the gold nanoparticles in the NIR regime via a robust and repeatable method will improve many applications requiring large quantities of desired NIR absorbing nanoparticles.

13.
Ann Biomed Eng ; 40(10): 2131-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22532323

RESUMO

Gold-gold sulfide nanoparticles (GGS-NPs) fabricated from chloroauric acid and sodium thiosulfate show unique near infrared (NIR) absorption that renders them as a promising candidate for photothermal cancer therapy. To improve targeting efficiency, we developed a versatile method to allow ordered immunoconjugation of antibodies on the surfaces of these nanoparticles via a PEGylated recombinant Protein G (ProG). The PEGylated ProG was prepared with orthopyridyldisulfide-polyethylene glycol-succinimidyl valerate, average MW 2000 (OPSS-PEG-SVA), to first allow the self-assembly of ProG on the nanoparticles, subsequently antibodies were added to this construct to enable active targeting. The bioconjugated GGS-NPs were characterized by TEM, NIR-spectra, dynamic light scattering and modified immunoassay. In in vitro studies, the ProG-conjugated GGS-NPs with bound mouse anti c-erbB-2 (HER-2) immunoglobulin G (IgG) successfully targeted the HER-2 overexpressing breast cancer cell, SK-BR-3. Extensive cell death was observed for the targeted SK-BR-3 line at a low laser power of 540 J (3 W cm(-2) for 3 min) while the control breast cancer cell (low expressing HER-2), HTB-22 survived. Using PEGylated ProG as a cofactor for immobilization of antibodies offers a promising strategy to functionalize various IgGs on nanoparticles for engineering their biomedical applications in cancer therapeutics.


Assuntos
Antineoplásicos/química , Proteínas de Bactérias/química , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ouro/química , Imunoconjugados/química , Nanopartículas/química , Receptor ErbB-2/antagonistas & inibidores , Sulfetos/química , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Antineoplásicos/química , Anticorpos Antineoplásicos/farmacologia , Antineoplásicos/farmacologia , Proteínas de Bactérias/farmacologia , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Ouro/farmacologia , Humanos , Imunoconjugados/farmacologia , Receptor ErbB-2/química , Sulfetos/farmacologia
14.
Mater Sci Eng C Mater Biol Appl ; 30(1): 92-97, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21833157

RESUMO

This paper describes the synthesis and surface engineering of core/shell-type iron/iron oxide nanoparticles for magnetic hyperthermia cancer therapy. Iron/iron oxide nanoparticles were synthesized from microemulsions of NaBH(4) and FeCl(3), followed by surface modification in which a thin hydrophobic hexamethyldisilazane layer - used to protect the iron core - replaced the CTAB coating on the particles. Phosphatidylcholine was then assembled on the nanoparticle surface. The resulting nanocomposite particles have a biocompatible surface and show good stability in both air and aqueous solution. Compared to iron oxide nanoparticles, the nanocomposites show much better heating in an alternating magnetic field. They are good candidates for both hyperthermia and magnetic resonance imaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...