Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Pharm Anal ; 14(3): 401-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618249

RESUMO

Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by Kelch-like ECH-associated protein 1 (Keap1) alkylation plays a central role in anti-inflammatory therapy. However, activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified. Deoxynyboquinone (DNQ) is a natural small molecule discovered from marine actinomycetes. The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1. DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo. The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α, ß-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine. DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway. Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation. The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry. DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489 (Cys489) on Keap1-Kelch domain, ultimately enabling the activation of Nrf2. Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α, ß-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain, suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.

2.
Molecules ; 29(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675548

RESUMO

The fungus Xylaria sp. Z184, harvested from the leaves of Fallopia convolvulus (L.) Á. Löve, has been isolated for the first time. Chemical investigation on the methanol extract of the culture broth of the titles strain led to the discovery of three new pyranone derivatives, called fallopiaxylaresters A-C (1-3), and a new bisabolane-type sesquiterpenoid, named fallopiaxylarol A (4), along with the first complete set of spectroscopic data for the previously reported pestalotiopyrone M (5). Known pyranone derivatives (6-11), sesquiterpenoids (12-14), isocoumarin derivatives (15-17), and an aromatic allenic ether (18) were also co-isolated in this study. All new structures were elucidated by the interpretation of HRESIMS, 1D, 2D NMR spectroscopy, and quantum chemical computation approach. The in vitro antimicrobial, anti-inflammatory, and α-glucosidase-inhibitory activities of the selected compounds and the crude extract were evaluated. The extract was shown to inhibit nitric oxide (NO) production induced by lipopolysaccharide (LPS) in murine RAW264.7 macrophage cells, with an inhibition rate of 77.28 ± 0.82% at a concentration of 50 µg/mL. The compounds 5, 7, and 8 displayed weak antibacterial activity against Staphylococcus areus subsp. aureus at a concentration of 100 µM.


Assuntos
Sesquiterpenos , Xylariales , Camundongos , Animais , Células RAW 264.7 , Xylariales/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Sesquiterpenos/isolamento & purificação , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Lipopolissacarídeos , Testes de Sensibilidade Microbiana , Macrófagos/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação
3.
Artigo em Inglês | MEDLINE | ID: mdl-38516703

RESUMO

Traditional Chinese medicine (TCM) has been used to treat triple-negative breast cancer (TNBC), a breast cancer subtype with poor prognosis. Clinical studies have verified that the Sanyingfang formula (SYF), a TCM prescription, has obvious effects on inhibiting breast cancer recurrence and metastasis, prolonging patient survival, and reducing clinical symptoms. However, its active ingredients and molecular mechanisms are still unclear. In this study, the active ingredients of each herbal medicine composing SYF and their target proteins are obtained from the Traditional Chinese Medicine Systems Pharmacology database. Breast cancer-related genes are obtained from the GeneCards database. Major targets and pathways related to SYF treatment in breast cancer are identified by analyzing the above data. By conducting molecular docking analysis, we find that the active ingredients quercetin and luteolin bind well to the key targets KDR1, PPARG, SOD1, and VCAM1. In vitro experiments verify that SYF can reduce the proliferation, migration, and invasion ability of TNBC cells. Using a TNBC xenograft mouse model, we show that SYF could delay tumor growth and effectively inhibit the occurrence of breast cancer lung metastasis in vivo. PPARG, SOD1, KDR1, and VCAM1 are all regulated by SYF and may play important roles in SYF-mediated inhibition of TNBC recurrence and metastasis.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38396214

RESUMO

This study evaluated the bioequivalence of the newly developed dapoxetine hydrochloride tablet relative to the marketed reference product by comparing their pharmacokinetic profiles under fasted and fed conditions. A total of 60 healthy Chinese male subjects participated in a single-center, 2-period, 2-sequence, randomized, open-label, self-crossover study with a washout period of 14 days, 30 in the fasted group and 30 in the fed group. Following a single 30-mg oral dose of the test or reference dapoxetine formulation, blood samples were collected before dosing to 72 hours after dosing. Liquid chromatography-tandem mass spectrometry was performed to measure plasma concentration of dapoxetine and determine pharmacokinetic parameters through noncompartmental analysis. The vital signs and adverse events were also monitored during the study. The 90% confidence intervals of the geometric mean ratios for maximum plasma concentration, area under the plasma concentration-time curve from time 0 to the last concentration time, and area under the plasma concentration-time curve from time 0 extrapolated to infinity of the 2 dapoxetine formulations completely fell within the regulatory criteria for bioequivalence of 80%-125%. In addition, both dapoxetine hydrochloride formulations were generally well tolerated. The generic dapoxetine hydrochloride tablet was bioequivalent to the marketed reference product in healthy Chinese men with no discernible safety differences.

5.
J Am Chem Soc ; 145(50): 27886-27899, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38055632

RESUMO

The antibacterial agents deoxynybomycin (DNM) and nybomycin (NM) have a unique tetracyclic structure featuring an angularly fused 4-oxazoline ring. Here, we report the identification of key enzymes responsible for forming the 4-oxazoline ring in Embleya hyalina NBRC 13850 by comparative bioinformatics analysis of the biosynthetic gene clusters encoding structurally similar natural products DNM, deoxynyboquinone (DNQ), and diazaquinomycins (DAQs). The N-methyltransferase DnmS plays a crucial role in catalyzing the N-dimethylation of a tricyclic precursor prenybomycin to generate NM D; subsequently, the Fe(II)/α-ketoglutarate-dependent dioxygenase (Fe/αKGD) DnmT catalyzes the formation of a 4-oxazoline ring from NM D to produce DNM; finally, a second Fe/αKGD DnmU catalyzes the C-12 hydroxylation of DNM to yield NM. Strikingly, DnmT is shown to display unexpected functions to also catalyze the decomposition of the 4-oxazoline ring and the N-demethylation, thereby converting DNM back to prenybomycin, to putatively serve as a manner to control the intracellular yield of DNM. Structure modeling, site-directed mutagenesis, and quantum mechanics calculations provide mechanistic insights into the DnmT-catalyzed reactions. This work expands our understanding of the functional diversity of Fe/αKGDs in natural product biosynthesis.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Quinolonas , Catálise , Compostos Ferrosos/química
6.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136305

RESUMO

BACKGROUND: Recent studies have shown that low-density lipoprotein receptor-related protein 1b (LRP1B), as a potential tumor suppressor, is implicated in the response to immunotherapy. The frequency of LRP1B mutation gene is high in many cancers, but its role in gastric cancer (GC) has not been determined. METHODS: The prognostic value of LRP1B mutation in a cohort containing 100 patients having received radical gastrectomy for stage II-III GC was explored. By analyzing the data of LRP1B mRNA, the risk score of differentially expressed genes (DEGs) between LRP1B mutation-type and wild-type was constructed based on the TCGA-STAD cohort. The infiltration of tumor immune cells was evaluated by the CYBERSORT algorithm and verified by immunohistochemistry. RESULTS: LRP1B gene mutation was an independent risk factor for disease-free survival (DFS) in GC patients (HR = 2.57, 95% CI: 1.28-5.14, p = 0.008). The Kaplan-Meier curve demonstrated a shorter survival time in high-risk patients stratified according to risk score (p < 0.0001). CYBERSORT analysis showed that the DEGs were mainly concentrated in CD4+ T cells and macrophages. TIMER analysis suggested that LRP1B expression was associated with the infiltration of CD4+ T cells and macrophages. Immunohistochemistry demonstrated that LRP1B was expressed in the tumor cells (TCs) and immune cells in 16/89 and 26/89 of the cohort, respectively. LRP1B-positive TCs were associated with higher levels of CD4+ T cells, CD8+ T cells, and CD86/CD163 (p < 0.05). Multivariate analysis showed that LRP1B-positive TCs represented an independent protective factor of DFS in GC patients (HR = 0.43, 95% CI: 0.10-0.93, p = 0.042). CONCLUSIONS: LRP1B has a high prognostic value in GC. LRP1B may stimulate tumor immune cell infiltration to provide GC patients with survival benefits.

7.
Front Oncol ; 13: 1254439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023181

RESUMO

Emerging evidence suggests that proline metabolism is important for regulating the survival and death of different types of cancer cells. Proline dehydrogenase (PRODH), an enzyme catalyzing proline catabolism, and the degradation products of proline by PRODH, such as ATP and ROS, are known to play critical roles in cancer progression. Notably, the role of PRODH in cancer is still complicated and unclear, and primarily depends on the cancer type and tumor microenvironment. For instance, PRODH induces apoptosis and senescence through ROS signaling in different types of cancers, while as a protumor factor, PRODH promotes malignant phenotypes of certain tumors under stresses such as hypoxia. In order to assess whether PRODH can serve as a novel target for cancer therapy, we will provide an overview of the biological functions of PRODH and its double-edged role in cancer in this article.

8.
Angew Chem Int Ed Engl ; 62(51): e202310728, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37917570

RESUMO

Regio- and chemoselective C-H activation at multi-positions of a single molecule is fascinating but chemically challenging. The homologous cytochrome P450 enzymes IkaD and CftA catalyze multiple C-H oxidations on the same polycyclic tetramate macrolactam (PoTeM) ikarugamycin, with distinct regio- and chemoselectivity. Herein we provide mechanistic understanding of their functional differences by solving crystal structures of IkaD and CftA in complex with ikarugamycin and unnatural substrates. Distinct conformations of the F/G region in IkaD and CftA are found to differentiate the orientation of PoTeM substrates, by causing different binding patterns with polar moieties to determine site selection, oxidation order, and chemoselectivity. Fine-tuning the polar subpocket altered the regioselectivity of IkaD, indicating that substrate re-orientation by mutating residues distal to the oxidation site could serve as an important method in future engineering of P450 enzymes.


Assuntos
Sistema Enzimático do Citocromo P-450 , Lactamas , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Catálise , Especificidade por Substrato
9.
NPJ Sci Food ; 7(1): 40, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567867

RESUMO

Risk communication is defined as the interactive exchange of information and opinions concerning risk, risk-related factors and risk perceptions amongst all the stakeholders of food safety throughout the risk analysis process. The interactive exchange of information occurs at three different levels i.e. informed level, dialogue level and engagement level. For an effective food safety risk communication (FSRC), it is important that the information should adhere to the core principles of risk communication which are transparency, openness, responsiveness and timeliness. Communication of a food safety risk within all the components of risk communication strategy constitutes a complex network of information flow that can be better understood with the help of a framework. Therefore, a model framework to communicate the risks associated with aflatoxins (AFs) dietary intake has been developed with the aim of (a) creating general awareness amongst public and (b) involving industry stakeholders in the prevention and control of risk. The framework has been motivated by the learnings and best practices outlined in the identified technical guidance documents for risk communication. Risk assessors, risk managers, industry stakeholders and general public have been identified as the major stakeholders for the present framework. Amongst them, industry stakeholders and general public has been selected as the major target audience for risk managers. Moreover, population residing in low- and middle-income countries (LMIC) has been identified as the main target group to reach.

10.
Front Pharmacol ; 14: 1121643, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266143

RESUMO

Background: Gastric cancer (GC) is a common malignant tumor with a poor prognosis. Combination treatments may prolong the survival of patients with GC. Acacetin, which is a flavonoid, exerts potent inhibitory effects on several types of cancer cells; however, the mechanisms of action remain poorly understood. Methods: Network pharmacology and RNA sequencing were used to predict the targets of acacetin, which were then verified by drug affinity responsive target stability (DARTS), cellular thermal shift assay (CETSA) and molecular docking. The biological functions of acacetin in MKN45 and MGC803 cells were investigated using TUNEL assays, crystal staining and colony formation assays. The pathways affected by acacetin were verified through reverse experiments. The in vivo antitumor efficacy of acacetin was assessed in a subcutaneous xenotransplanted tumor model. Results: In this study, we identified EGFR from more than a dozen predicted targets as a protein that directly binds to acacetin. Moreover, acacetin affected the level of phosphorylated EGFR. In vitro, acacetin promoted the apoptosis of GC cells. Importantly, EGFR agonists reversed the inhibitory effects of acacetin on the STAT3 and ERK pathways. In vivo, acacetin decreased the protein levels of pEGFR in tumors, resulting in increased GC xenograft tumor regression without obvious toxicity. Conclusion: Our findings highlight EGFR as one of the direct targets of acacetin in GC cells. Acacetin inhibited the phosphatase activity of EGFR in vitro and in vivo, which played a role in the antitumor effects of acacetin. These studies provide new evidence for the use of acacetin as a potential reagent for the treatment of GC.

11.
Appl Immunohistochem Mol Morphol ; 31(5): 295-303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093708

RESUMO

High podoplanin (PDPN) expression correlates with poor prognosis in various cancers. However, the expression and clinical value of PDPN in glioma are unclear. In this study, PDPN expression was compared in 227 glioma tissues and 22 paired non-neoplastic tissues, and its association with prognostic factors was statistically analyzed. The effect of PDPN knockdown on the proliferation ability of glioma cells (U87MG and U118MG cell lines) was assessed along with the underlying molecular mechanism. Overexpression of PDPN was observed in the majority of glioma tissues compared with the expression in normal tissues. PDPN overexpression was positively correlated with IDH wild-type status, TERT promoter mutation status, and ATRX retention status, and was negatively correlated with 1p/19q codeletion status. The expression level of PDPN was positively correlated with the glioma grade in the diffuse astrocytoma, IDH wild-type. High PDPN expression was also negatively correlated with survival in astrocytoma patients with IDH mutation or wild-type and in glioblastoma patients with IDH wild-type. Grade, radiochemotherapy, and PDPN overexpression emerged as independent indicators for a poor prognosis of glioma patients. PDPN knockdown suppressed proliferation and reduced p-Akt and p-mTOR protein expression in glioma cells. PDPN is a potential biomarker or therapeutic target for glioma that is closely associated with tumor grade and poor prognosis, which may play a role in enhancing cell proliferation via Akt/mTOR signaling.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Astrocitoma/genética , Neoplasias Encefálicas/patologia , Glioma/metabolismo , Isocitrato Desidrogenase/genética , Mutação , Proteínas Proto-Oncogênicas c-akt/genética
12.
Crit Rev Food Sci Nutr ; : 1-20, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995226

RESUMO

Maize gluten meal (MGM) is a by-product of maize starch and ethanol, produced by the wet milling process. Its high protein content makes it a preferred ingredient in feed. Given the high prevalence of mycotoxins in maize globally, they pose a significant challenge to use of MGM for feed: wet milling could concentrate certain mycotoxins in gluten components, and mycotoxin consumption affects animal health and can contaminate animal-source foods. To help confront this issue, this paper summarizes mycotoxin occurrence in maize, distribution during MGM production and mycotoxin risk management strategies for MGM through a comprehensive literature review. Available data emphasize the importance of mycotoxin control in MGM and the necessity of a systematic control approach, which includes: good agriculture practices (GAP) in the context of climate change, degradation of mycotoxin during MGM processing with SO2 and lactic acid bacteria (LAB) and the prospect of removing or detoxifying mycotoxins using emerging technologies. In the absence of mycotoxin contamination, MGM represents a safe and economically critical component of global animal feed. With a holistic risk assessment-based, seed-to-MGM-feed systematic approach to reducing and decontaminating mycotoxins in maize, costs and negative health impacts associated with MGM use in feed can be effectively reduced.

13.
BMC Cancer ; 23(1): 104, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717819

RESUMO

PURPOSE: To explore the potential pathogenesis and clinical features of second primary glioblastoma (spGBM) following first primary renal cell carcinoma (fpRCC). METHODS: Patients with spGBM after fpRCC were enrolled from our institution and the SEER dataset. Sanger sequencing, whole genome sequencing, and immunehistochemistry were used to detect molecular biomarkers. RESULTS: Four and 122 cases from our institution and the SEER dataset, respectively, were collected with an overall median age of 69 years at spGBM diagnosis following fpRCC. The median interval time between fpRCC and spGBM was 50.7 months and 4 years, for the four and 122 cases respectively. The median overall survival time was 11.2 and 6.0 months for the two datasets. In addition, spGBM patients of younger age (< 75 years) or shorter interval time (< 1 year) had favorable prognosis (p = 0.081 and 0.05, respectively). Moreover, the spGBM cases were molecularly classified as TERT only paired with TP53 mutation, PIK3CA mutation, EGFR alteration, low tumor mutation burden, and stable microsatellite status. CONCLUSIONS: This is the first study to investigate the pathogenesis and clinical features of spGBM following spRCC. We found that spGBMs are old-age related, highly malignant, and have short survival time. Moreover, they might be misdiagnosed and treated as brain metastases from RCC. Thus, the incidence of spGBMs after fpRCC is underestimated. Further studies are needed to investigate the underlying molecular mechanisms and clinical biomarkers for the development of spGBM following fpRCC.


Assuntos
Carcinoma de Células Renais , Glioblastoma , Neoplasias Renais , Humanos , Idoso , Carcinoma de Células Renais/patologia , Glioblastoma/patologia , Mutação , Genômica , Biomarcadores Tumorais/genética , Prognóstico , Neoplasias Renais/patologia
14.
Animal Model Exp Med ; 6(5): 489-498, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36097701

RESUMO

BACKGROUND: SHARPIN (SHANK-associated RH domain interactor) is a component of the linear ubiquitination complex that regulates the NF-κB signaling pathway. To better understand the function of SHARPIN, we sought to establish a novel genetically engineered Syrian hamster with SHARPIN disruption using the CRISPR/Cas9 system. METHODS: A single-guide ribonucleic acid targeting exon 1 of SHARPIN gene was designed and constructed. The zygotes generated by cytoplasmic injection of the Cas9/gRNA ribonucleoprotein were transferred into pseudopregnant hamsters. Neonatal mutants were identified by genotyping. SHARPIN protein expression was detected using Western blotting assay. Splenic, mesenteric lymph nodes (MLNs), and thymic weights were measured, and organ coefficients were calculated. Histopathological examination of the spleen, liver, lung, small intestine, and esophagus was performed independently by a pathologist. The expression of lymphocytic markers and cytokines was evaluated using reverse transcriptase-quantitative polymerase chain reaction. RESULTS: All the offspring harbored germline-transmitted SHARPIN mutations. Compared with wild-type hamsters, SHARPIN protein was undetectable in SHARPIN-/- hamsters. Spleen enlargement and splenic coefficient elevation were spotted in SHARPIN-/- hamsters, with the descent of MLNs and thymuses. Further, eosinophil infiltration and structural alteration in spleens, livers, lungs, small intestines, and esophagi were obvious after the deletion of SHARPIN. Notably, the expression of CD94 and CD22 was downregulated in the spleens of knockout (KO) animals. Nonetheless, the expression of CCR3, CCL11, Il4, and Il13 was upregulated in the esophagi. The expression of NF-κB and phosphorylation of NF-κB and IκB protein significantly diminished in SHARPIN-/- animals. CONCLUSIONS: A novel SHARPIN KO hamster was successfully established using the CRISPR/Cas9 system. Abnormal development of secondary lymphoid organs and eosinophil infiltration in multiple organs reveal its potential in delineating SHARPIN function and chronic inflammation.


Assuntos
Sistemas CRISPR-Cas , NF-kappa B , Animais , Cricetinae , NF-kappa B/metabolismo , Mesocricetus , Sistemas CRISPR-Cas/genética , Animais Geneticamente Modificados
15.
Toxins (Basel) ; 14(12)2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36548716

RESUMO

Aflatoxin contamination in corn is a significant issue, posing substantial health threats to humans and animals. Aflatoxin testing protects consumer health, ensures the safe global trade of corn, and verifies compliance with legislation; however, effective sampling procedures are essential to ensure reliable results. While many sampling procedures exist, there is no evidence to indicate which is the best approach to ensure accurate detection. Using scientific and gray literature sources, this review analyzed sampling procedures to determine an optimum approach to guide the development of standard practices. Results revealed that sampling is the major source of error in the accurate assessment of aflatoxin levels in food and crucial for obtaining reliable results. To guarantee low variability and sample bias-increased sample size and sampling frequency, the use of automatic dynamic sampling techniques, adequate storage, and homogenization of aggregate samples for analysis are advised to ensure a representative sample. However, there is a lack of evidence to support this or indicate the current utilization of the reviewed procedures. Inadequate data prevented the recommendation of sample sizes or frequency for optimum practice, and thus, further research is required. There is an urgent need to make sampling procedures fit-for-purpose to obtain accurate and reliable aflatoxin measurements.


Assuntos
Aflatoxinas , Humanos , Animais , Aflatoxinas/análise , Zea mays , Projetos de Pesquisa , Alimentos , Contaminação de Alimentos/análise
16.
Aging (Albany NY) ; 14(22): 9280-9299, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446351

RESUMO

Colorectal cancer (CRC) is one of the most common malignant tumors in the world, and most colorectal cancer is transformed from colorectal adenoma (CRA). Identifying biomarkers for the early prediction of colorectal cancer would be an important finding. Circular RNA (circRNA) plays a key role in the occurrence and development of tumors, and its biological characteristics make it a potential biomarker for the early diagnosis of diseases. Therefore, we explored the relationship between circRNA and the malignant transformation from colorectal adenoma to colorectal cancer. We constructed inflammation-based tumorigenesis mouse models and performed high-throughput RNA sequencing to determine the expression profile of circRNAs in tissues at different stages of disease. Subsequent STEM analysis showed that with the development of the disease, 30 circRNAs were significantly downregulated, and 10 circRNAs were significantly upregulated. After qRT-PCR and Fish analysis verification, it was clear that mmu_circ_0008035 and mmu_circ_0000420 were significantly and continuously overexpressed in the development of colorectal cancer in our mouse model. Next, through homology analysis of circRNA in human and mouse and validation of clinical normal tissues, adenoma tissues and CRC tissues, we found biomarkers of has_circ0101338 ahashsa_circ0022426 that could predict the malignant transformation of human colorectal inflammation into CRC and have certain diagnostic value. In conclusion, our results may shed light on the mechanism of progression from precancerous adenoma to cancer and provide biomarkers that may be used in the early diagnosis of CRC.


Assuntos
Adenoma , Neoplasias Colorretais , Humanos , Camundongos , Animais , RNA Circular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Biomarcadores , Adenoma/genética , Transformação Celular Neoplásica/genética , Inflamação/genética
17.
Front Pharmacol ; 13: 964793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046819

RESUMO

Colorectal cancer (CRC) is one of the most common malignant carcinomas. CRC is characterized by asymptomatic onset, and most patients are already in the middle and advanced stages of disease when they are diagnosed. Inflammatory bowel disease (IBD) and the inflammatory-cancer transformation of advanced colorectal adenoma are the main causes of CRC. There is an urgent need for effective prevention and intervention strategies for CRC. In recent years, rapid research progress has increased our understanding of gut microbiota. Meanwhile, with the deepening of research on the pathogenesis of colorectal cancer, gut microbiota has been confirmed to play a direct role in the occurrence and treatment of colorectal cancer. Strategies to regulate the gut microbiota have potential value for application in the prevention and treatment of CRC. Regulation of gut microbiota is one of the important ways for natural products to exert pharmacological effects, especially in the treatment of metabolic diseases and tumours. This review summarizes the role of gut microbiota in colorectal tumorigenesis and the mechanism by which natural products reduce tumorigenesis and improve therapeutic response. We point out that the regulation of gut microbiota by natural products may serve as a potential means of treatment and prevention of CRC.

18.
Front Pharmacol ; 13: 944088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873545

RESUMO

Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.

19.
Appl Environ Microbiol ; 88(15): e0078522, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35867567

RESUMO

Whole-genome sequencing (WGS) for public health surveillance and epidemiological investigation of foodborne pathogens predominantly relies on sequencing platforms that generate short reads. Continuous improvement of long-read nanopore sequencing, such as Oxford nanopore technologies (ONT), presents a potential for leveraging multiple advantages of the technology in public health and food industry settings, including rapid turnaround and onsite applicability in addition to superior read length. Using an established cohort of Salmonella Enteritidis isolates for subtyping evaluation, we assessed the technical readiness of nanopore long read sequencing for single nucleotide polymorphism (SNP) analysis and core-genome multilocus sequence typing (cgMLST) of a major foodborne pathogen. By multiplexing three isolates per flow cell, we generated sufficient sequencing depths in <7 h of sequencing for robust subtyping. SNP calls by ONT and Illumina reads were highly concordant despite homopolymer errors in ONT reads (R9.4.1 chemistry). In silico correction of such errors allowed accurate allelic calling for cgMLST and allelic difference measurements to facilitate heuristic detection of outbreak isolates. IMPORTANCE Evaluation, standardization, and implementation of the ONT approach to WGS-based, strain-level subtyping is challenging, in part due to its relatively high base-calling error rates and frequent iterations of sequencing chemistry and bioinformatic analytics. Our study established a baseline for the continuously evolving nanopore technology as a viable solution to high-quality subtyping of Salmonella, delivering comparable subtyping performance when used standalone or together with short-read platforms. This study paves the way for evaluating and optimizing the logistics of implementing the ONT approach for foodborne pathogen surveillance in specific settings.


Assuntos
Nanoporos , Salmonella enteritidis , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único , Salmonella enteritidis/genética , Sequenciamento Completo do Genoma
20.
Am J Cancer Res ; 12(5): 2277-2292, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693091

RESUMO

Endoplasmic reticulum (ER) stress occurs when proteins are affected by various factors, fail to fold properly into higher structures and accumulate in the lumen of the ER, which activates the unfolded protein response (UPR) to restore normal cellular function or induce apoptosis as a self-protective mechanism. However, a growing number of studies have shown that the three branches of ER stress and the UPR can mediate inflammation and cancer development by interacting with inflammatory transformation-related signaling pathways. Targeting the UPR, especially the use of small molecules that target the active sites of the enzymes IRE1α and PERK and BIP/GRP78 inhibitors are potential strategies for treating tumors and have shown promising results in some tumor models. Therefore, in this review, we summarize the progress of ER stress/UPR research and the signaling pathways associated with inflammatory cancer transformation, provide an in-depth description of the mechanisms of these pathways, and outline strategies in the field of UPR biology in tumor therapy to provide new ideas for the mechanisms of inflammatory cancer transformation and tumor-related treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...