Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36363439

RESUMO

With the improvement of the antiknock performance of warships, shaped charge warheads have been focused on and widely used to design underwater weapons. In order to cause efficient damage to warships, it is of great significance to study the formation of shaped charge projectiles in air and water. This paper uses Euler governing equations to establish numerical models of shaped charges subjected to air and underwater explosions. The formation and the movement of Explosively Formed Projectiles (EFPs) in different media for three cases: air explosion and underwater explosions with and without air cavities are discussed. First, the velocity distributions of EFPs in the formation process are discussed. Then, the empirical coefficient of the maximum head velocity of EFPs in air is obtained by simulations of air explosions of shaped charges with different types of explosives. The obtained results agree well with the practical solution, which validates the numerical model. Further, this empirical coefficient in water is deduced. After that, the evolutions of the head velocity of EFPs in different media for the above three cases are further compared and analyzed. The fitting formulas of velocity attenuation of EFPs, which form and move in different media, are gained. The obtained results can provide a theoretical basis and numerical support for the design of underwater weapons.

2.
Micromachines (Basel) ; 13(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36363957

RESUMO

In recent years, vortex-induced vibration (VIV) has been widely employed to collect small-scale wind energy as a renewable energy source for microelectronics and wireless sensors. In this paper, a two-degree-of-freedom (2DOF) VIV-based piezoelectric energy harvester (VIVPEH) was designed, and its aerodynamic characteristics were thoroughly investigated. First, based on the traditional model theory and combined with the knowledge of vibration dynamics, the governing equations of the 2DOF VIVPEH were established. The dynamic responses, including the displacement and voltage output, were numerically simulated. Compared with the traditional 1DOF VIVPEH, the 2DOF VIVPEH proposed in this paper produced two lock-in regions for broadband wind energy harvesting. Furthermore, it was unveiled that the first- and second-order resonances were induced in the first and lock-in regions, respectively. Subsequently, a parametric study was conducted to investigate the influences of the circuit and mechanical parameters on the energy harvesting performance of the 2DOF VIVPEH. It was found that when the 2DOF VIVPEH was induced to vibrate in different lock-in regions, its optimal resistance became different. Moreover, by varying the masses and stiffnesses of the primary and secondary DOFs, we could adjust the lock-in regions in terms of their bandwidths, locations, and amplitudes, which provides a possibility for further customization and optimization.

3.
Phys Rev E ; 99(2-1): 023310, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934334

RESUMO

A hybrid numerical method which couples the immersed-boundary lattice Boltzmann method with the smoothed point interpolation method (S-PIM) is presented in this paper for the fluid-structure interaction problems involving large solid deformation. In the method, the lattice Boltzmann method is adopted for its advantages in modeling complex fluid flow, the S-PIM is coupled for its robustness in dealing with large solid deformation, and the immersed-boundary method is used for its efficiency in handling the interaction of fluid and solid. In the fluid-solid coupling procedure, a force correction technique based direct-forcing scheme is introduced to enforce nonslip boundary condition with high accuracy, and an averaged dual time stepping scheme is proposed to get stronger robustness of the present method. Numerical experiments are carefully carried out from benchmark problems such as cylinder Couette flow and a beam in a fluid tunnel to more challenging problems such as a flexible beam in the wake of a cylinder and the swimming of a two-dimensional fishlike body. Comparisons of the numerical results with the referenced solutions show that all desirable features of these coupled methods are inherited in the present coupling scheme, and the efficiency of the present method to model such complex problems is verified.

4.
Nanotechnology ; 26(31): 315501, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26184034

RESUMO

The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 10(9) estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA