Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Plant J ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739690

RESUMO

Several dwarf and semi-dwarf genes have been identified in barley. However, only a limited number have been effectively utilized in breeding programs to cultivate lodging resistant varieties. This is due to the common association of dwarf and semi-dwarf traits with negative effects on malt quality. In this study, we employed gene editing to generate three new haplotypes of sdw1/denso candidate gene gibberellin (GA) 20-oxidase2 (GA20ox2). These haplotypes induced a dwarfing phenotype and enhancing yield potential, and promoting seed dormancy, thereby reducing pre-harvest sprouting. Moreover, ß-amylase activity in the grains of the mutant lines was significantly increased, which is beneficial for malt quality. The haplotype analysis revealed significant genetic divergence of this gene during barley domestication and selection. A novel allele (sdw1.ZU9), containing a 96-bp fragment in the promoter region of HvGA20ox2, was discovered and primarily observed in East Asian and Russian barley varieties. The 96-bp fragment was associated with lower gene expression, leading to lower plant height but higher germination rate. In conclusion, HvGA20ox2 can be potentially used to develop semi-dwarf barley cultivars with high yield and improved malt quality.

2.
Sci Total Environ ; 929: 172725, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663610

RESUMO

Solar-induced chlorophyll fluorescence (SIF) has been found to be robustly correlated with gross primary productivity (GPP) based on satellite datasets. However, it is unclear whether nitrogen affects the relationship between SIF and GPP at the canopy scale. Here, seasonal dynamics of SIF, GPP, vegetation physiology and canopy structure were measured synchronously throughout growing season along the nitrogen gradient in a rice paddy of China's subtropical region. Our results found that the slope of SIF against GPP was not constant, showing an increasing trend from low to high nitrogen levels. The sensitivity of SIF to nitrogen was larger than that of GPP. Nitrogen enrichment versus deficiency had asymmetrical effects on the SIF-GPP relationship. The steeper slope of SIF against GPP under high nitrogen level was mainly attributed to the promotion of canopy fluorescence efficiency (ΦF) rather than the variation of canopy fluorescence escape probability (Fesc). These results emphasize the vital role of nitrogen in exploring mechanisms underlying SIF dynamics and decoding GPP from SIF.


Assuntos
Clorofila , Nitrogênio , China , Fluorescência , Luz Solar , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Fotossíntese , Monitoramento Ambiental
3.
Genes (Basel) ; 15(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38540412

RESUMO

DNA methylation (DNAm) is associated with the reproductive system. However, the genetic mechanism through which DNAm regulates gene expression and thus affects litter size in goats is unclear. Therefore, in the present work, genome-wide DNAm profiles of HP and LP Jining Grey goat ovary tissues were comprehensively analyzed via WGBS, and RNA-Seq data were combined to identify candidate genes associated with litter size traits in the Jining Grey goat. Finally, BSP and RT-qPCR were used to verify the sequencing results of the key genes. Notably, the DNMT genes were downregulated at the expression level in the HP group. Both groups exhibited comparable levels of methylation. A total of 976 differentially methylated regions (DMRs) (973 DMRs for CG and 3 DMRs for CHG) and 310 differentially methylated genes (DMGs) were identified in this study. Through integration of WGBS and RNA-Seq data, we identified 59 differentially methylated and differentially expressed genes (DEGs) and ultimately screened 8 key DMGs (9 DMRS) associated with litter size traits in Jining Grey goats (SERPINB2: chr24_62258801_62259000, NDRG4: chr18_27599201_27599400, CFAP43: chr26_27046601_27046800, LRP1B. chr2_79720201_79720400, EPHA6: chr1_40088601_40088800, TTC29: chr17_59385801_59386000, PDE11A: chr2_117418601_117418800 and PGF: chr10_ 16913801_16914000 and chr10_16916401_16916600). In summary, our research comprehensively analyzed the genome-wide DNAm profiles of HP and LP Jining Grey goat ovary tissues. The data findings suggest that DNAm in goat ovaries may play an important role in determining litter size.


Assuntos
Metilação de DNA , Cabras , Gravidez , Animais , Feminino , Tamanho da Ninhada de Vivíparos/genética , Cabras/genética , Metilação de DNA/genética , Genoma , Ovário/metabolismo
4.
Cells ; 13(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534401

RESUMO

Wool is produced and controlled by hair follicles (HFs). However, little is known about the mechanisms involved in HF development and regulation. Sheep dermal fibroblasts (SDFs) play a key role in the initial stage of HF development. Analyzing the molecular mechanism that regulates early HF development in superfine wool sheep is of great importance for better understanding the HF morphogenesis process and for the breeding of fine wool sheep. Here, we show that two microRNAs (miRNAs) affect the development of HFs by targeting two genes that are expressed by SDFs. Meanwhile, the overexpression and inhibition of oar-miR-23b and oar-miR-133 in SDFs cells and cell proliferation, apoptosis, and migration were further detected using a CCK-8 assay, an Annexin V-FITC assay, a Transwell assay, and flow cytometry. We found that oar-miR-23b, oar-miR-133, and their cotarget genes TGFß2 and NOTCH1 were differentially expressed during the six stages of HF development in superfine wool sheep. Oar-miR-23b and oar-miR-133 inhibited the proliferation and migration of SDFs and promoted the apoptosis of SDFs through TGFß2 and NOTCH1. oar-miR-23b and oar-miR-133 inhibited the proliferation and migration of SDFs by jointly targeting TGFß2 and NOTCH1, thereby inhibiting the development of superfine wool HFs. Our research provides a molecular marker that can be used to guide the breeding of ultrafine wool sheep.


Assuntos
Folículo Piloso , MicroRNAs , Ovinos/genética , Animais , MicroRNAs/genética , Fibroblastos , Biomarcadores , Proliferação de Células
5.
J Bioenerg Biomembr ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427128

RESUMO

BACKGROUND: Diabetic retinopathy is one of the complications of diabetes mellitus. The aim of this study was to explore the effects of ubiquitin-specific protease 48 (USP48) and its underlying mechanisms in the development of diabetic retinopathy. METHODS: CCK-8 assay, EdU assay, and flow cytometry were used to measure the proliferative ability and the apoptotic rate of ARPE-19 cells, respectively. ELISA kits were utilized to assess the levels of inflammatory cytokines. The levels of Fe2+, ROS and MDA were detected using the corresponding biochemical kits. The protein expression of USP48 and SLC1A5 was examined through western blot. The mRNA level of SLC1A5 was determined using RT-qPCR. The interaction relationship between USP48 and SLC1A5 was evaluated using Co-IP assay. RESULTS: High glucose (HG) treatment significantly inhibited cell proliferation and elevated cell apoptosis, inflammation, ferroptosis and oxidative stress in ARPE-19 cells. HG treatment-caused cell damage was hindered by USP48 or SLC1A5 overexpression in ARPE-19 cells. Fer-1 treatment improved HG-caused cell damage in ARPE-19 cells, which was blocked by USP48 knockdown. Moreover, USP48 knockdown decreased SLC1A5 expression. SLC1A5 downregulation reversed the improvement effects of USP48 upregulation on cell damage in HG-treated ARPE-19 cells. CONCLUSION: USP48 overexpression deubiquitinated SLC1A5 to elevate cell proliferation and suppress cell apoptosis, inflammation, ferroptosis and oxidative stress in HG-triggered ARPE-19 cells, thereby inhibiting the progression of diabetic retinopathy.

6.
Discov Oncol ; 15(1): 32, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329652

RESUMO

BACKGROUND: Solitary fibrous tumors (SFT) and meningiomas (MA) have similar clinical and radiographic presentations but require different treatment approaches and have different prognoses. This emphasizes the importance of a correct preoperative diagnosis of SFT versus MA. OBJECTIVE: In this study, investigated the differences in imaging characteristics between SFT and MA to improve the accuracy of preoperative imaging diagnosis of SFT. METHODS: The clinical and imaging data of 26 patients with SFT and 104 patients with MA who were pathologically diagnosed between August 2017 and December 2022, were retrospectively analyzed. The clinical and imaging differences between SFT and MA, as well as between the various pathological grades of SFT, were analyzed. RESULTS: Age, gender, cystic change, flow void phenomenon, yin-yang sign, lobulation, narrow base, tumor/cortex signal ratio (TCSR) > 1.0 in T1-weighted imaging (T1WI), TCSR ≥ 1.1 in T2-weighted imaging (T2WI), peritumoral edema, and absence of dural tail sign varied between SFT and MA. As per the receiver operating characteristic (ROC) curve analysis, TCSR > 1 in T1WI has the maximum diagnostic accuracy for SFT. Cranial or venous sinus invasion had a positive effect on SFT (Grade III, World Health Organization (WHO) grading). CONCLUSION: Among the many radiological and clinical distinctions between SFT and MA, TCSR ≥ 1 exhibits the highest predictive efficacy for SFT; while cranial or venous sinus invasion may be a predictor of WHO grade III SFT.

7.
Sci Total Environ ; 921: 171005, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38378068

RESUMO

Cadmium (Cd), a toxic heavy metal, poses significant threats to both crop production and human health worldwide. Manganese (Mn), an essential micronutrient, plays a crucial role in plant growth and development. NRAMPs (Natural Resistance-Associated Macrophage Proteins) function as common transporters for both Cd and Mn. Deep understanding of the regulatory mechanisms governing NRAMP-mediated Cd and Mn transport is imperative for developing the crop varieties with high tolerance and low accumulation of Cd. This review reported the advance in studies on the fundamental properties and classification of NRAMPs in plants, and structural characteristics, expression patterns, and diverse functions of NRAMP genes across different plant species. We highlighted the pivotal role of NRAMPs in Cd/Mn uptake and transport in plants as a common transporter. Finally, we also comprehensively discussed over the strategies for reducing Cd uptake and accumulation in plants through using antagonism of Mn over Cd and altering the expression of NRAMP genes.


Assuntos
Manganês , Oligoelementos , Humanos , Manganês/toxicidade , Manganês/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
8.
Theor Appl Genet ; 137(1): 14, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165440

RESUMO

KEY MESSAGE: HvBGlu3, a ß-glucosidase enzyme gene, negatively influences ß-glucan content in barley grains by mediating starch and sucrose metabolism in developing grains. Barley grains are rich in ß-glucan, an important factor affecting end-use quality. Previously, we identified several stable marker-trait associations (MTAs) and novel candidate genes associated with ß-glucan content in barley grains using GWAS (Genome Wide Association Study) analysis. The gene HORVU3Hr1G096910, encoding ß-glucosidase 3, named HvBGlu3, is found to be associated with ß-glucan content in barley grains. In this study, conserved domain analysis suggested that HvBGlu3 belongs to glycoside hydrolase family 1 (GH1). Gene knockout assay revealed that HvBGlu3 negatively influenced ß-glucan content in barley grains. Transcriptome analysis of developing grains of hvbglu3 mutant and the wild type indicated that the knockout of the gene led to the increased expression level of genes involved in starch and sucrose metabolism. Glucose metabolism analysis showed that the contents of many sugars in developing grains were significantly changed in hvbglu3 mutants. In conclusion, HvBGlu3 modulates ß-glucan content in barley grains by mediating starch and sucrose metabolism in developing grains. The obtained results may be useful for breeders to breed elite barley cultivars for food use by screening barley lines with loss of function of HvBGlu3 in barley breeding.


Assuntos
Hordeum , beta-Glucanas , beta-Glucosidase/genética , Hordeum/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Amido , Sacarose
9.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1737-1748, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37728621

RESUMO

Acrolein, a common environmental pollutant, is linked to the development of cardiovascular inflammatory diseases. Pelargonidin is a natural compound with anti-inflammation activity. In this study, we aimed to explore the effects of pelargonidin on inflammation induced by acrolein in human umbilical vein endothelial cells (HUVECs). MTT assay was utilized for assessing cell viability in HUVECs. LDH release in HUVECs was measured using the LDH kit. Western blot was used to detect the protein expression of p-p65, p65 and COX-2. Inflammation was evaluated through determining the levels of PGE2, IL-1ß, IL-6, IL-8 and TNF-α in HUVECs after treatment. COX-2 mRNA expression and COX-2 content were examined using RT-qPCR and a human COX-2 ELISA kit, respectively. Acrolein treatment at 50 µM resulted in a 45% decrease in the viability and an increase in LDH release (2.2-fold) in HUVECs. Pelargonidin at 5, 10, 20, and 40 µM alleviated acrolein-caused inhibitory effect on cell viability (increased to 1.3-, 1.5-, 1.8-, and 1.9-fold, respectively, compared to acrolein treatment group) and promoting effect on LDH release (decreased to 82%, 75%, 62%, and 58%, respectively, compared to acrolein treatment group) in HUVECs. Moreover, pelargonidin or pyrrolidine dithiocarbamate (PDTC; an NF-κB pathway inhibitor) inhibited acrolein-induced activation of the NF-κB pathway. Acrolein elevated the levels of PGE2, IL-1ß, IL-6, IL-8 and TNF-α (from 40.2, 27.3, 67.2, 29.0, 24.8 pg/mL in control group to 224.0, 167.3, 618.3, 104.6, and 275.1 pg/mL in acrolein treatment group, respectively), which were retarded after pelargonidin (decreased to 134.8, 82.3, 246.2, 70.2, and 120.8 pg/mL in acrolein + pelargonidin treatment group) or PDTC (decreased to 107.9, 80.1, 214.6, 64.0, and 96.6 pg/mL in acrolein + PDTC treatment group) treatment in HUVECs. Pelargonidin inactivated the NF-κB pathway to reduce acrolein-induced COX-2 expression. Furthermore, pelargonidin relieved acrolein-triggered inflammation through decreasing COX-2 expression by inactivating the NF-κB pathway in HUVECs. In conclusion, pelargonidin could protect against acrolein-triggered inflammation in HUVECs through attenuating COX-2 expression by inactivating the NF-κB pathway.


Assuntos
Acroleína , Antocianinas , NF-kappa B , Prolina/análogos & derivados , Tiocarbamatos , Humanos , NF-kappa B/metabolismo , Células Endoteliais da Veia Umbilical Humana , Ciclo-Oxigenase 2/metabolismo , Acroleína/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8 , Dinoprostona/metabolismo , Transdução de Sinais , Células Cultivadas , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo
12.
BMC Cancer ; 23(1): 928, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784036

RESUMO

OBJECTIVE: Gastric cancer (GC) is one of the malignant tumors with the highest mortality worldwide. Our previous studies have revealed that LINC00691 is up-regulated in serum of GC patients as a novel potential biomarker for GC diagnosis and prognosis. However, the roles of serum exosomal LINC00691 in GC has not been clarified. This study aimed to find the expression pattern of serum exosomal LINC00691 in GC patients and the correlation between the level of serum exosomal LINC00691 and the pathology of gastric cancer patients. METHODS: We collected the serum of 94 GC patients before surgery and extracted exosomes to detect the expression level of exosomal LINC00691, with 21 healthy volunteers and 17 patients with benign gastric diseases as controls. Surgical GC tissues and paired healthy tissues were collected to culture primary cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs). We then treated NFs with LINC00691-rich GC cell culture supernatant or exosomes and detected the activation markers and biological functions of the fibroblasts. RESULTS: The results of real-time qPCR indicated that the serum exosomal LINC00691 of GC patients was significantly higher than that of healthy subjects and patients with benign gastric diseases, and was associated with the clinicopathology of GC patients. More interestingly, when the NFs were treated with GC exosomes, the level of LINC00691 was significantly increased, the cell proliferation and migration were noticeably enhanced, and the ability to accelerate GC cell proliferation and invasion was promoted, which means that the induced fibroblasts gained the properties of CAFs. In addition, we found that knockdown of LINC00691 and the use of the JAK2/STAT3 signaling pathway inhibitor ruxolitinib effectively deprived exosome-containing GC cell supernatants of the effects on NFs. CONCLUSION: Our study suggested that exosomal LINC00691 promoted NFs to gained the properties of CAFs depending on JAK2/STAT3 signaling pathway as a potential diagnostic biomarker for GC.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , MicroRNAs , Neoplasias Gástricas , Humanos , Fibroblastos Associados a Câncer/metabolismo , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/metabolismo , Exossomos/genética , Exossomos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética
13.
J Otol ; 18(4): 193-198, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37877071

RESUMO

Objective: To investigate the potential influence of anatomical variation in the anterior inferior cerebellar artery (AICA) on the occurrence and severity of idiopathic sudden sensorineural hearing loss (ISSNHL). Methods: Ninety ISSNHL patients were enrolled. The anatomical location of the AICA was exhibited using high-resolution magnetic resonance imaging (MRI), and the various AICA types classified by previously reported Chavda and Gorrie methods were analyzed. The severity of hearing loss in the ipsilateral ear among different AICA types was compared. Results: Approximately 85.6% of subjects had unilateral ISSNHL (uISSNHL), and the others had bilateral ISSNHL (bISSNHL). In the uISSNHL group, the ratios of different AICA types were similar between the ipsilateral and contralateral ears. The ratios of the different AICA types in the bISSNHL group were similar to those in the uISSNHL group. In the uISSNHL group, pure tone audiometry (PTA) thresholds at 2 kHz, 4 kHz and 8 kHz of patients with Chavda type II AICA were higher than those of patients with Chavda type I and type III, with a significant difference at 4 kHz between type I and type II. There was a tendency of the PTA threshold in patients with Chavda type II or Gorrie type C to gradually increase from low to high frequency zones. Conclusion: When the AICA enters the IAC (Chavda type II) or crosses between the 7th and 8th cranial nerves (Gorrie type C), the severity and frequency of hearing impairment in ISSNHL but not the occurrence of ISSNHL will be affected.

14.
Oncol Lett ; 26(4): 421, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37664650

RESUMO

Esophageal squamous cell carcinoma (ESCC) is an aggressive malignancy of the digestive system with increasing incidence and mortality rates. The biological roles of microRNA (miR)-378a-3p in tumor cells remain contested, and the mechanisms underlying the functions, energy metabolism, and cell survival mechanisms in ESCC cells are yet to be fully elucidated. In the present study, miR-378a-3p overexpression and negative control plasmids were transfected into ECA-109 cells using electroporation. Western blotting was used to detect the relative expression of proteins, and flow cytometry was used to detect cell apoptosis. Subsequently, ELISA assays were performed to determine enzyme activity, and an ATP detection kit was used to measure ATP content. Dual-luciferase reporter assays were performed to identify the target genes of miR-378a-3p. The results of the present study demonstrated that miR-378a-3p inhibited the gene expression and enzyme activities of glucose transporter protein 1 (GLUT-1), Aldolase A (ALDOA), and pyruvate kinase M2 (PKM2), all of which are involved in the glycolytic pathway of cells. Energy metabolism was suppressed by miR-378a-3p by reducing ATP content, and this downregulated the expression of Bcl-2 and Survivin. Moreover, increased miR-378a-3p expression promoted cell apoptosis in the early stages by increasing the expression levels and the activity of Bad and Caspase-3, while inhibiting the expression levels of Bcl-2 and Survivin. The results of the present study also demonstrated that GLUT-1/ALDOA/PKM2 were target genes of miR-378a-3p. Notably, miR-378a-3p blocked energy production and promoted the apoptosis of tumor cells via the downregulation of glycolytic enzyme expression and by reducing the mitochondrial membrane potential in ESCC. Bad, Caspase-3, Survivin, and Bcl-2 may be associated with blocking energy production and promoting apoptosis via miR-378a-3p in ESCC cells.

15.
Polymers (Basel) ; 15(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37631520

RESUMO

Organic solar cells (OSCs) have gained increasing attention. Among the various directions in OSCs, all-polymer solar cells (all-PSCs) have emerged as a highly promising and currently active research area due to their excellent film formation properties, mechanical properties, and thermal stabilities. However, most of the high-efficiency all-PSCs are processed from chloroform with an active layer thickness of ~100 nm. In order to meet the requirements for industrialization, a thicker active layer processed from low-vapor pressure solvents (preferentially a hydrocarbon solvent) is strongly desired. Herein, we employ toluene (a hydrocarbon solvent with a much higher boiling point than chloroform) and a method known as sequential processing (SqP) to mitigate the rapid decline in efficiency with increasing film thickness. We show that SqP enables a more favorable vertical phase segregation that leads to less trap-assisted recombination and enhanced charge extraction and lifetime than blend-cast devices at higher film thicknesses.

16.
Macromol Rapid Commun ; 44(21): e2300374, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37616581

RESUMO

The utilization of accelerators has been a common approach to prepare low-temperature curable polyimide (PI). However, the accelerators have gradually fallen out of favor because of their excessive dosages and negative effect on the properties of PI. In this work, a new strategy of introducing accelerators by grafting to eliminate these disadvantages is presented. A novel quinoline derivative named 6-([1,1'-biphenyl]-4-yl)-4-chloroquinoline (NQL) is designed for this purpose, and an ultralow dosage of only 2.5 mol% is sufficient to prepare low-temperature curable PI. The favorable low-temperature curing effect of NQL is attributed to its strong alkalinity (pKa = 18.47) and electron-donating ability. At a curing temperature of 200 °C, the PI with 2.5 mol% NQL showed outstanding properties (Young's modulus of 5.73 GPa, elongation of 37.3%, tensile strength of 237 MPa, and coefficient of thermal expansion of 16 ppm K-1 ). In particular, NQL can even lower the curing temperature to 180 °C and the ultralow temperature curable PI film still retains excellent properties. These results demonstrate that introducing low-temperature curable accelerators by partial grafting instead of blending is a promising way to furnish low-temperature curable PI, and provide insights into the preparation of polyimide with high performance in advanced packaging.


Assuntos
Temperatura Baixa , Quinolinas , Temperatura , Módulo de Elasticidade , Elétrons
17.
Sci Rep ; 13(1): 10915, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407657

RESUMO

This paper presents a normalized standard error-based statistical data binning method, termed "bin size index" (BSI), which yields an optimized, objective bin size for constructing a rational histogram to facilitate subsequent deconvolution of multimodal datasets from materials characterization and hence the determination of the underlying probability density functions. Totally ten datasets, including four normally-distributed synthetic ones, three normally-distributed ones on the elasticity of rocks obtained by statistical nanoindentation, and three lognormally-distributed ones on the particle size distributions of flocculated clay suspensions, were used to illustrate the BSI's concepts and algorithms. While results from the synthetic datasets prove the method's accuracy and effectiveness, analyses of other real datasets from materials characterization and measurement further demonstrate its rationale, performance, and applicability to practical problems. The BSI method also enables determination of the number of modes via the comparative evaluation of the errors returned from different trial bin sizes. The accuracy and performance of the BSI method are further compared with other widely used binning methods, and the former yields the highest BSI and smallest normalized standard errors. This new method particularly penalizes the overfitting that tends to yield too many pseudo-modes via normalizing the errors by the number of modes hidden in the datasets, and also eliminates the difficulty in specifying criteria for acceptable values of the fitting errors. The advantages and disadvantages of the new method are also discussed.

18.
Lancet Reg Health West Pac ; 34: 100725, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37283972

RESUMO

Background: Sabin inactivated and bivalent oral poliovirus vaccine (sIPV, bOPV) were commonly used in China since 2016. We conducted an open-label, randomised, controlled phase 4 trial to assess immune persistence following sequential immunisation with sIPV or bOPV, and immunogenicity and safety of a booster dose of poliovirus vaccine in children aged 4 years. Methods: Participants from a previous clinical trial with three different sequential schedules with sIPV (I) or bOPV (B) at ages 2, 3, and 4 months (Groups I-B-B, I-I-B, I-I-I) in 2017 were followed-up. The children were further divided into five subgroups after sIPV was given for Group I-B-B, and sIPV or bOPV randomly given for Group I-I-B and Group I-I-I (128 children in Groups I-B-B-I, 60 in Group I-I-B-B, 64 in Group I-I-B-I, 68 in Group I-I-I-B, 67 in Group I-I-I-I). Immune persistence and immunogenicity were assessed by measuring poliovirus type-specific antibodies, and safety were analysed in all children who received the booster dose. Findings: Between Dec 5, 2020 and Jun 30, 2021, we respectively enrolled 381 participants in the immune persistence analysis, and 352 participants in per protocol (PP) analysis of the immunogenicity of the booster immunisation. Seropositivity rates of antibodies against poliovirus types 1 and 3 were all >90% four years after primary immunisation, while for poliovirus type 2 were 46.83%, 75.41%, and 90.23% (χ2 = 60.948, P < 0.001) for Groups I-B-B, I-I-B, and I-I-I, respectively. After the booster dose, seropositivity rates were 100% for all three serotypes in Group I-B-B-I, I-I-B-I and I-I-I-I; In Group I-I-B-B and I-I-I-B, the seropositivity rates for types 1 and 3 were all 100%, for type 2 were 92.59% and 98.46%. The geometric mean titres (GMTs) against poliovirus 1 and 3 were all high in five groups (>1860.73), and the GMTs against type 2 were significantly lower in groups booster with bOPV: Group I-I-B-B (50.60) and Group I-I-I-B (247.84). There was no significant difference in seropositivity rates or GMTs for all three serotypes (P > 0.05) between Group I-I-B-I and I-I-I-I. No serious adverse events occurred during the study. Interpretation: Our findings suggest that at least two sIPV doses are needed in the current routine poliovirus immunisation schedule, and schedules containing 3 or 4 doses of sIPV provide better protection against poliovirus type 2 than the current sIPV-sIPV-bOPV-bOPV schedule in China. Funding: Medical and Health Science and Technology of Zhejiang Province (2021KY118). This trial was registered with ClinicalTrials.gov (NCT04576910).

19.
Front Neurol ; 14: 1159658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273692

RESUMO

Background: The mechanisms of Meniere's disease (MD) remain largely unknown. The purpose of this study was to identify possible genetic variants associated with immune regulation in MD. Methods: The whole immune genome of 16 Chinese patients diagnosed with sporadic MD was sequenced using next-generation sequencing. Results: Definite pathological variants of MEFV (c.1223G>A, c.1105C>T), COL7A1 (c.5287C>T), and ADA (c.445C>T) contributing to the clinical phenotype were found in three patients. Limited and likely pathological variants of TLR3 (c.2228G>A) and RAB27A (c.560G>A) were detected in one patient each. The following definite pathological variants impairing the structure and function of translated proteins were detected in 10 patients, and multigene variants occurred in five patients: PRF1 (c.710C>A), UNC13D (c.1228A>C), COLEC11 (c.169C>T), RAG2 (c.200G>C), BLM (c.1937G>T), RNF31 (c.2533G>A), FAT4 (c.11498A>G), PEPD (c.788A>G), TNFSF12 (c.470G>A), VPS13B (c.11972A>T), TNFRSF13B (c.226G>A), ERCC6L2 (c.4613A>G), TLR3 (c.2228G>A), ADA (c.445C>T), PEPD (c.151G>A), and MOGS (c.2470G>A). The following limited pathological variants impairing the structure and function of translated proteins were detected in five patients, with double gene variants identified in one patient: EXTL3 (c.1396G>A), MTHFD1 (c.2057G>A), FANCA (c.2039T>C), LPIN2 (c.1814C>T), NBAS (c.4049T>C), and FCN3 (c.734G>A). Conclusion: Patients with sporadic MD carry multiple genetic variants involved in multiple steps of immune regulation, which might render patients susceptible to developing inflammation via both autoimmune and autoinflammation mechanisms upon internal stress.

20.
J Hematol Oncol ; 16(1): 50, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158938

RESUMO

BACKGROUND: QL1706 (PSB205) is a single bifunctional MabPair (a novel technical platform) product consisting of two engineered monoclonal antibodies (anti-PD-1 IgG4 and anti-CTLA-4 IgG1), with a shorter elimination half-life (t1/2) for CTLA-4. We report results from a phase I/Ib study of QL1706 in patients with advanced solid tumors who failed standard therapies. METHODS: In the phase I study, QL1706 was administered intravenously once every 3 weeks at one of five doses ranging from 0.3 to 10 mg/kg, and the maximum tolerated dose, recommended phase 2 dose (RP2D), safety, pharmacokinetics (PK), and pharmacodynamics (PD) of QL1706 were investigated. In the phase Ib study, QL1706 was administered at the RP2D intravenously every 3 weeks, and the preliminary efficacies in non-small cell lung cancer (NSCLC), nasopharyngeal carcinoma (NPC), cervical cancer (CC), and other solid tumors were evaluated. RESULTS: Between March 2020 and July 2021, 518 patients with advanced solid tumors were enrolled (phase I, n = 99; phase Ib, n = 419). For all patients, the three most common treatment-related adverse events (TRAEs) were rash (19.7%), hypothyroidism (13.5%), and pruritus (13.3%). The TRAEs and immune-related adverse events (irAEs) of grade ≥ 3 occurred in 16.0% and 8.1% of patients, respectively. In phase I, 2 of 6 patients in the 10mg/kg group experienced dose-limiting toxicities (DLTs) (grade 3 thrombocytopenia and grade 4 immune-mediated nephritis), so the maximum tolerated dose (MTD) was reached at 10 mg/kg. The RP2D was determined to be 5 mg/kg based on comprehensive analysis of tolerability, PK/PD, and efficacy. For all patients who received QL1706 at the RP2D, the objective response rate (ORR) and median duration of response were 16.9% (79/468) and 11.7 months (8.3-not reached [NR]), respectively; and the ORRs were 14.0% (17/121) in NSCLC, 24.5% (27/110) in NPC, 27.3% (15/55) in CC, 7.4% (2/27) in colorectal cancer, 23.1% (6/26) in small cell lung cancer. For immunotherapy-naive patients, QL1706 exhibited promising antitumor activities, especially in NSCLC, NPC, and CC, with ORRs of 24.2%, 38.7%, and 28.3%, respectively. CONCLUSIONS: QL1706 was well tolerated and demonstrated promising antitumor activity in solid tumors, especially in NSCLC, NPC, and CC patients. It is currently being evaluated in randomized phase II (NCT05576272, NCT05179317) and phase III (NCT05446883, NCT05487391) trials. Trial Registration ClinicalTrials.gov Identifier: NCT04296994 and NCT05171790.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Antígeno CTLA-4 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Nasofaríngeo , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antígeno CTLA-4/antagonistas & inibidores , Imunoglobulina G , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Carcinoma Nasofaríngeo/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...