Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(5): 341, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755133

RESUMO

The liver is a major metastatic site (organ) for gastrointestinal cancers (such as colorectal, gastric, and pancreatic cancers) as well as non-gastrointestinal cancers (such as lung, breast, and melanoma cancers). Due to the innate anatomical position of the liver, the apoptosis of T cells in the liver, the unique metabolic regulation of hepatocytes and other potential mechanisms, the liver tends to form an immunosuppressive microenvironment and subsequently form a pre-metastatic niche (PMN), which can promote metastasis and colonization by various tumor cells(TCs). As a result, the critical role of immunoresponse in liver based metastasis has become increasingly appreciated. T cells, a centrally important member of adaptive immune response, play a significant role in liver based metastases and clarifying the different roles of the various T cells subsets is important to guide future clinical treatment. In this review, we first introduce the predisposing factors and related mechanisms of liver metastasis (LM) before introducing the PMN and its transition to LM. Finally, we detail the role of different subsets of T cells in LM and advances in the management of LM in order to identify potential therapeutic targets for patients with LM.


Assuntos
Neoplasias Hepáticas , Linfócitos T , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Linfócitos T/imunologia , Animais , Microambiente Tumoral/imunologia
2.
Org Lett ; 25(27): 5151-5156, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37394755

RESUMO

A rhodium(I)-catalyzed highly enantioselective ring-opening and isomerization of cyclobutanols has been developed. The reaction provides a mild, atom-economical, and redox-neutral approach for the synthesis of chiral acyclic ketones bearing a ß-tertiary stereocenter. Excellent enantioselectivities and high yields can be achieved using cyclobutanols with alkoxy substituents at the C3 position. Mechanistic studies reveal that cyclobutanol only undergoes intramolecular hydrogen migration, and the formation of a (Z)-unsaturated ketone intermediate is crucial for achieving high enantioselectivity.


Assuntos
Ródio , Estrutura Molecular , Cetonas , Estereoisomerismo , Isomerismo , Catálise
3.
Angew Chem Int Ed Engl ; 61(34): e202208232, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35751507

RESUMO

The development of a mild and general method for C(sp3 )-H functionalization of cyclic amines has been an ongoing challenge. In this work, we describe the copper-catalyzed enantioselective C(sp3 )-H alkynylation of unactivated cyclic 2-iodo-benzamide under photo-irradiation by intramolecular 1,5-hydrogen atom transfer (HAT). The employment of a new bisoxazoline diphenylamine ligand, in conjunction with 1,1'-bi-2-naphthol, which significantly improved the reduction potential of the copper complex, was the key to success of this chemistry. Mechanistic and computational studies supported that the new copper complex served the dual role as a photoredox and coupling catalyst, the reaction went through a radical process, and the intramolecular 1,5-HAT process was involved in the rate-limiting step. Apart from the broad substrate scope including unprecedented benzocyclic amines, this method also showed excellent diastereoselectivity in 2-monosubstituted cyclic amines via substrate control.

4.
Chem Commun (Camb) ; 58(44): 6377-6380, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35593073

RESUMO

Breath odor sensing-based individual authentication was conducted for the first time using an artificial olfactory sensor system. Using a 16-channel chemiresistive sensor array and machine learning, a mean accuracy of >97% was successfully achieved. The impact of the number of sensors on the accuracy and reproducibility was also demonstrated.


Assuntos
Aprendizado de Máquina , Odorantes , Reprodutibilidade dos Testes
5.
Innovation (Camb) ; 3(3): 100244, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35519513

RESUMO

Azetidines are an important type of saturated, highly strained, four-membered, nitrogen-containing heterocyclic compound. These compounds serve as important raw materials, intermediates, and catalysts in organic synthesis, as well as important active units in amino acids, alkaloids, and pharmaceutically active compounds. Thus, the development of an efficient and concise method to construct azetidines is of great significance in multiple disciplines. In this work, we reported on the photo-induced copper-catalyzed radical annulation of aliphatic amines with alkynes to produce azetidines. This reaction occurred in a two- or three-component manner. The alkynes efficiently captured photogenerated α-aminoalkyl radicals, forming vinyl radicals, which initiated tandem 1,5-hydrogen atom transfer and 4-exo-trig cyclization. Density functional theory calculations indicated that the tertiary radical intermediate was critical for the success of cyclization. In addition, the resulting saturated azetidine scaffolds possessed vicinal tertiary-quaternary and even quaternary-quaternary centers.

6.
Chem Commun (Camb) ; 58(44): 6465, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35593413

RESUMO

Correction for 'Breath odor-based individual authentication by an artificial olfactory sensor system and machine learning' by Chaiyanut Jirayupat et al., Chem. Commun., 2022, DOI: https://doi.org/10.1039/D1CC06384G.

7.
Nano Lett ; 22(6): 2569-2577, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35226506

RESUMO

In situ fabrication of well-defined bridging nanostructures is an interesting and unique approach to three-dimensionally design nanosensor structures, which are hardly attainable by other methods. Here, we demonstrate the significant effect of edge-topological regulation on in situ fabrication of ZnO bridging nanosensors. When employing seed layers with a sharp edge, which is a well-defined structure in conventional lithography, the bridging angles and electrical resistances between two opposing electrodes were randomly distributed. The stochastic nature of bridging growth direction at the sharp edges inherently causes such unintentional variation of structural and electrical properties. We propose an edgeless seed layer structure using a two-layers resist method to solve the above uncontrollability of bridging nanosensors. Such bridging nanosensors not only substantially improved the uniformity of structural and electrical properties between two opposing electrodes but also significantly enhanced the sensing responses for NO2 with the smaller variance and the lower limit of detection via in situ controlled electrical contacts.


Assuntos
Nanoestruturas , Eletrodos , Nanoestruturas/química
8.
ACS Sens ; 7(2): 534-544, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35072452

RESUMO

Humidity and moisture effects, frequently called water poisoning, in surroundings are inevitable for various molecular sensing devices, strongly affecting their sensing characteristics. Here, we demonstrate a water-selective nanostructured dehumidifier composed of ZnO/TiO2/CaCl2 core-shell heterostructured nanowires for molecular sensing spaces. The fabricated nanostructured dehumidifier is highly water-selective without detrimental adsorptions of various volatile organic compound molecules and can be repeatedly operated. The thermally controllable and reversible dehydration process of CaCl2·nH2O thin nanolayers on hydrophilic ZnO/TiO2 nanowire surfaces plays a vital role in such water-selective and repeatable dehumidifying operations. Furthermore, the limitation of detection for sensing acetone and nonanal molecules in the presence of moisture (relative humidity ∼ 90%) was improved more than 20 times using nanocomposite sensors by operating the developed nanostructured dehumidifier. Thus, the proposed water-selective nanostructured dehumidifier offers a rational strategy and platform to overcome water poisoning issues for various molecular and gas sensors.


Assuntos
Nanofios , Óxido de Zinco , Cloreto de Cálcio , Umidade , Água
9.
ACS Sens ; 7(2): 460-468, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35067043

RESUMO

We propose a rational strategy to fabricate thermally robust, highly integrated molecular and gas sensors utilizing a lateral SnO2 nanofilm channel geometry on a 1024 crossbar sensor array. The proposed lateral channel geometry substantially suppresses the detrimental effects of parasitic interconnect wire resistances compared with those of a conventional vertical sandwich-type crossbar array because of its excellent resistance controllability. A conductive oxide top-contact electrode on the lateral SnO2 nanofilm channel enhances the thermal stability at temperatures of up to 500 °C in ambient air. Integrating this lateral SnO2 nanofilm geometry with analog circuits enables the operation of a 1024 crossbar sensor array without selector devices to avoid sneak currents. The developed 1024 crossbar sensor array system detects the local spatial distribution of the molecular gas concentration. The spatial data of molecular concentrations include molecule-specific data to distinguish various volatile molecules based on their vapor pressures. Thus, this integrated crossbar sensor array system using lateral nanofilm geometry offers a platform for robust, reliable, highly integrated molecular and gas sensors.

10.
ACS Sens ; 7(1): 151-158, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34788009

RESUMO

Polymer-carbon nanocomposite sensor is a promising molecular sensing device for electronic nose (e-nose) due to its printability, variety of polymer materials, and low operation temperature; however, the lack of stability in an air environment has been an inevitable issue. Here, we demonstrate a design concept for realizing long-term stability in a polyethylene glycol (PEG)-carbon black (CB) nanocomposite sensor by understanding the underlying phenomena that cause sensor degradation. Comparison of the sensing properties and infrared spectroscopy on the same device revealed that the oxidation-induced consumption of PEG is a crucial factor for the sensor degradation. According to the mechanism, we introduced an antioxidizing agent (i.e., ascorbic acid) into the PEG-CB nanocomposite sensor to suppress the PEG oxidation and successfully demonstrated the long-term stability of sensing properties under an air environment for 30 days, which had been difficult in conventional polymer-carbon nanocomposite sensors.


Assuntos
Nanocompostos , Polietilenoglicóis , Carbono/química , Nanocompostos/química , Polietilenoglicóis/química , Polímeros/química , Fuligem
11.
Genetics ; 220(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791228

RESUMO

Dietary interventions can dramatically affect physiological health and organismal lifespan. The degree to which organismal health is improved depends upon genotype and the severity of dietary intervention, but neither the effects of these factors, nor their interaction, have been quantified in an outbred population. Moreover, it is not well understood what physiological changes occur shortly after dietary change and how these may affect the health of an adult population. In this article, we investigated the effect of 6-month exposure of either caloric restriction (CR) or intermittent fasting (IF) on a broad range of physiological traits in 960 1-year old Diversity Outbred mice. We found CR and IF affected distinct aspects of physiology and neither the magnitude nor the direction (beneficial or detrimental) of effects were concordant with the severity of the intervention. In addition to the effects of diet, genetic variation significantly affected 31 of 36 traits (heritabilities ranged from 0.04 to 0.65). We observed significant covariation between many traits that was due to both diet and genetics and quantified these effects with phenotypic and genetic correlations. We genetically mapped 16 diet-independent and 2 diet-dependent significant quantitative trait loci, both of which were associated with cardiac physiology. Collectively, these results demonstrate the degree to which diet and genetics interact to shape the physiological health of adult mice following 6 months of dietary intervention.


Assuntos
Restrição Calórica
12.
ACS Polym Au ; 2(4): 266-274, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36855566

RESUMO

Despite biomass-derived methylene butyrolactone monomers having great potential in substituting the petroleum-based methacrylates for synthesizing the sustainable acrylic polymers, the possible industrial production of these cyclic monomers is unfortunately not practical due to moderate overall yields and harsh reaction conditions or a time-consuming multistep process. Here we report a convenient and effective synthetic approach to a series of biomass-derived methylene butyrolactone monomers via a zinc-mediated allylation-lactonization one-pot reaction of biorenewable aldehydes with ethyl 2-(bromomethyl)acrylate. Under simple room-temperature sonication conditions, near-quantitative conversions (>90%) can be accomplished within 5-30 min, providing pure products with high isolated yields of 70-80%. Their efficient polymerizations with a high degree of control and complete chemoselectivity were enabled by the judiciously chosen Lewis pair catalyst based on methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide) [MeAl(BHT)2] Lewis acid and 3-diisopropyl-4,5-dimethylimidazol-2-ylidene (I i Pr) Lewis base, affording new poly(methylene butyrolactone)s with high thermal stability and thermal properties tuned in a wide range as well as pendant vinyl groups for postfunctionalization. Through the development of an effective depolymerization setup (370-390 °C, ca. 100 mTorr, 1 h, a muffle furnace), thermal depolymerizations of these polymers have been achieved with monomer recovery up to 99.8%, thus successfully constructing sustainable acrylic polymers with closed-loop recyclability.

13.
Nat Commun ; 12(1): 6404, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737326

RESUMO

Cyclobutanols are privileged cyclic skeletons in natural products and synthetic building blocks. C(sp3)-H functionalization is a prolonged challenge in organic synthesis. The synthesis of cyclobutanols through double C(sp3)-H bond functionalization remains elusive. Here we report the efficient synthesis of cyclobutanols through intermolecular radical [3 + 1] cascade cyclization, involving the functionalization of two C - H bonds through sequential hydrogen atom transfer. The copper complex reduces the iodomethylsilyl alcohols efficiently under blue-light irradiation to initiate the tandem transformation. The mild reaction tolerates a broad range of functional groups and allows for the facile generation of elaborate polycyclic structures.

14.
Analyst ; 146(22): 6684-6725, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34667998

RESUMO

Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.


Assuntos
Nanofios , Eletrônica , Reprodutibilidade dos Testes
15.
Anal Chem ; 93(44): 14708-14715, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34704450

RESUMO

We present a method named NPFimg, which automatically identifies multivariate chemo-/biomarker features of analytes in chromatography-mass spectrometry (MS) data by combining image processing and machine learning. NPFimg processes a two-dimensional MS map (m/z vs retention time) to discriminate analytes and identify and visualize the marker features. Our approach allows us to comprehensively characterize the signals in MS data without the conventional peak picking process, which suffers from false peak detections. The feasibility of marker identification is successfully demonstrated in case studies of aroma odor and human breath on gas chromatography-mass spectrometry (GC-MS) even at the parts per billion level. Comparison with the widely used XCMS shows the excellent reliability of NPFimg, in that it has lower error rates of signal acquisition and marker identification. In addition, we show the potential applicability of NPFimg to the untargeted metabolomics of human breath. While this study shows the limited applications, NPFimg is potentially applicable to data processing in diverse metabolomics/chemometrics using GC-MS and liquid chromatography-MS. NPFimg is available as open source on GitHub (http://github.com/poomcj/NPFimg) under the MIT license.


Assuntos
Metabolômica , Software , Biomarcadores , Cromatografia Líquida , Humanos , Aprendizado de Máquina , Espectrometria de Massas , Reprodutibilidade dos Testes
16.
Sensors (Basel) ; 21(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199716

RESUMO

Investigation on the long-term thermal response of precast high-strength concrete (PHC) energy pile is relatively rare. This paper combines field experiments and numerical simulations to investigate the long-term thermal properties of a PHC energy pile in a layered foundation. The major findings obtained from the experimental and numerical studies are as follows: First, the thermophysical ground properties gradually produce an influence on the long-term temperature variation. For the soil layers with relatively higher thermal conductivity, the ground temperature near to the energy pile presents a slowly increasing trend, and the ground temperature response at a longer distance from the center of the PHC pile appears to be delayed. Second, the short- and long-term thermal performance of the PHC energy pile can be enhanced by increasing the thermal conductivity of backfill soil. When the thermal conductivities of backfill soil in the PHC pile increase from 1 to 4 W/(m K), the heat exchange amounts of energy pile can be enhanced by approximately 30%, 79%, 105%, and 122% at 1 day and 20%, 47%, 59%, and 66% at 90 days compared with the backfill water used in the site. However, the influence of specific heat capacity of the backfill soil in the PHC pile on the short-term or long-term thermal response can be ignored. Furthermore, the variation of the initial ground temperature is also an important factor to affect the short-and-long-term heat transfer capacity and ground temperature variation. Finally, the thermal conductivity of the ground has a significant effect on the long-term thermal response compared with the short-term condition, and the heat exchange rates rise by about 5% and 9% at 1 day and 21% and 37% at 90 days as the thermal conductivities of the ground increase by 0.5 and 1 W/(m K), respectively.

17.
Chem Sci ; 12(13): 4836-4840, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-34163735

RESUMO

A method for remote radical C-H alkynylation and amination of diverse aliphatic alcohols has been developed. The reaction features a copper nucleophile complex formed in situ as a photocatalyst, which reduces the silicon-tethered aliphatic iodide to an alkyl radical to initiate 1,n-hydrogen atom transfer. Unactivated secondary and tertiary C-H bonds at ß, γ, and δ positions can be functionalized in a predictable manner.

18.
Chem Sci ; 12(14): 5073-5081, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34168769

RESUMO

The surface cation composition of nanoscale metal oxides critically determines the properties of various functional chemical processes including inhomogeneous catalysts and molecular sensors. Here we employ a gradual modulation of cation composition on a ZnO/(Cu1-x Zn x )O heterostructured nanowire surface to study the effect of surface cation composition (Cu/Zn) on the adsorption and chemical transformation behaviors of volatile carbonyl compounds (nonanal: biomarker). Controlling cation diffusion at the ZnO(core)/CuO(shell) nanowire interface allows us to continuously manipulate the surface Cu/Zn ratio of ZnO/(Cu1-x Zn x )O heterostructured nanowires, while keeping the nanowire morphology. We found that surface exposed copper significantly suppresses the adsorption of nonanal, which is not consistent with our initial expectation since the Lewis acidity of Cu2+ is strong enough and comparable to that of Zn2+. In addition, an increase of the Cu/Zn ratio on the nanowire surface suppresses the aldol condensation reaction of nonanal. Surface spectroscopic analysis and theoretical simulations reveal that the nonanal molecules adsorbed at surface Cu2+ sites are not activated, and a coordination-saturated in-plane square geometry of surface Cu2+ is responsible for the observed weak molecular adsorption behaviors. This inactive surface Cu2+ well explains the mechanism of suppressed surface aldol condensation reactions by preventing the neighboring of activated nonanal molecules. We apply this tailored cation composition surface for electrical molecular sensing of nonanal and successfully demonstrate the improvements of durability and recovery time as a consequence of controlled surface molecular behaviors.

19.
Langmuir ; 37(17): 5172-5179, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33890792

RESUMO

Click reactions (e.g., Huisgen cycloaddition) on metal oxide nanostructures offer a versatile and robust surface molecular modification for various applications because they form strong covalent bonds in a wide range of molecular substrates. This study reports a rational strategy to maximize the conversion rate of surface click reactions on single-crystalline ZnO nanowires by monitoring the reaction progress. p-Polarized multiple-angle incidence resolution spectrometry (pMAIRS) and Fourier-transformed infrared (FT-IR) spectroscopy were employed to monitor the reaction progress of an azide-terminated self-assembled monolayer (SAM) on single-crystalline ZnO nanowires. Although various reaction parameters including the concentration of Cu(I) catalysts, triazolyl ligands, solvents, and target alkynes were systematically examined for the surface click reactions, 10-30% of terminal azide on the nanowire surface remained unreacted. Temperature-dependent FT-IR measurements revealed that such unreacted residual azides deteriorate the thermal stability of the nanowire molecular layer. To overcome this observed conversion limitation of click reactions on nanostructure surfaces, we considered the steric hindrance around the closely packed SAM reaction points, then experimented with dispersing the azide moiety into a methyl-terminated SAM. The mixed-SAM method significantly improved the azide conversion rate to almost 100%. This reaction method enables the construction of spatially patterned molecular surface modifications on metal oxide nanowire arrays without detrimental unreacted azide groups.

20.
ACS Appl Mater Interfaces ; 13(14): 16812-16819, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33784465

RESUMO

Seeded crystal growths of nanostructures within confined spaces offer an interesting approach to design chemical reaction spaces with tailored inner surface properties. However, such crystal growth within confined spaces tends to be inherently difficult as the length increases as a result of confinement effects. Here, we demonstrate a space-confined seeded growth of ZnO nanowires within meter-long microtubes of 100 µm inner diameter with the aspect ratio of up to 10 000, which had been unattainable to previous methods of seeded crystal growths. ZnO nanowires could be grown via seeded hydrothermal crystal growth for relatively short microtubes below the length of 40 mm, while any ZnO nanostructures were not observable at all for longer microtubes above 60 mm with the aspect ratio of 600. Microstructural and mass spectrometric analysis revealed that a conventional seed layer formation using zinc acetate is unfeasible within the confined space of long microtubes as a result of the formation of detrimental residual Zn complex compounds. To overcome this space-confined issue, a flow-assisted seed layer formation is proposed. This flow-assisted method enables growth of spatially uniform ZnO nanowires via removing residual compounds even for 1 m long microtubes with the aspect ratio of up to 10 000. Finally, the applicably of ZnO-nanowire-decorated long microtubes for liquid-phase separations was demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...