Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 568
Filtrar
1.
BMC Genomics ; 25(1): 454, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720264

RESUMO

BACKGROUND: In response to seasonal cold and food shortage, the Xizang plateau frogs, Nanorana parkeri (Anura: Dicroglossidae), enter a reversible hypometabolic state where heart rate and oxygen consumption in skeletal muscle are strongly suppressed. However, the effect of winter hibernation on gene expression and metabolic profiling in these two tissues remains unknown. In the present study, we conducted transcriptomic and metabolomic analyses of heart and skeletal muscle from summer- and winter-collected N. parkeri to explore mechanisms involved in seasonal hibernation. RESULTS: We identified 2407 differentially expressed genes (DEGs) in heart and 2938 DEGs in skeletal muscle. Enrichment analysis showed that shared DEGs in both tissues were enriched mainly in translation and metabolic processes. Of these, the expression of genes functionally categorized as "response to stress", "defense mechanisms", or "muscle contraction" were particularly associated with hibernation. Metabolomic analysis identified 24 and 22 differentially expressed metabolites (DEMs) in myocardium and skeletal muscle, respectively. In particular, pathway analysis showed that DEMs in myocardium were involved in the pentose phosphate pathway, glycerolipid metabolism, pyruvate metabolism, citrate cycle (TCA cycle), and glycolysis/gluconeogenesis. By contrast, DEMs in skeletal muscle were mainly involved in amino acid metabolism. CONCLUSIONS: In summary, natural adaptations of myocardium and skeletal muscle in hibernating N. parkeri involved transcriptional alterations in translation, stress response, protective mechanisms, and muscle contraction processes as well as metabolic remodeling. This study provides new insights into the transcriptional and metabolic adjustments that aid winter survival of high-altitude frogs N. parkeri.


Assuntos
Anuros , Hibernação , Metabolômica , Músculo Esquelético , Animais , Hibernação/genética , Hibernação/fisiologia , Músculo Esquelético/metabolismo , Anuros/genética , Anuros/metabolismo , Anuros/fisiologia , Miocárdio/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Estações do Ano , Metaboloma , Tibet
2.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731398

RESUMO

(1) Background: Alzheimer's disease (AD) is characterized by ß-amyloid (Aß) peptide accumulation and mitochondrial dysfunction during the early stage of disease. PINK1 regulates the balance between mitochondrial homeostasis and bioenergy supply and demand via the PINK1/Parkin pathway, Na+/Ca2+ exchange, and other pathways. (2) Methods: In this study, we synthesized positively charged carbon dots (CA-PEI CDs) using citric acid (CA) and polyethyleneimine (PEI) and used them as vectors to express PINK1 genes in the APP/PS1-N2a cell line to determine mitochondrial function, electron transport chain (ETC) activity, and ATP-related metabolomics. (3) Results: Our findings showed that the CA-PEI CDs exhibit the characteristics of photoluminescence, low toxicity, and concentrated DNA. They are ideal biological carriers for gene delivery. PINK1 overexpression significantly increased the mitochondrial membrane potential in APP/PS1-N2a cells and reduced reactive-oxygen-species generation and Aß1-40 and Aß1-42 levels. An increase in the activity of NADH ubiquinone oxidoreductase (complex I, CI) and cytochrome C oxidase (complex IV, CIV) induces the oxidative phosphorylation of mitochondria, increasing ATP generation. (4) Conclusions: These findings indicate that the PINK gene can alleviate AD by increasing bioenergetic metabolism, reducing Aß1-40 and Aß1-42, and increasing ATP production.


Assuntos
Trifosfato de Adenosina , Carbono , Ácido Cítrico , Mitocôndrias , Polietilenoimina , Proteínas Quinases , Polietilenoimina/química , Carbono/química , Trifosfato de Adenosina/metabolismo , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Pontos Quânticos/química , Animais , Peptídeos beta-Amiloides/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Humanos , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
3.
Phytomedicine ; 129: 155631, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38640858

RESUMO

BACKGROUND: The utilization of Chinese medicine as an adjunctive therapy for cancer has recently gained significant attention. Ferroptosis, a newly regulated cell death process depending on the ferrous ions, has been proved to be participated in glioma stem cells inactivation. PURPOSE: We aim to study whether ginsenoside Rg5 exerted inhibitory effects on crucial aspects of glioma stem cells, including cell viability, tumor initiation, invasion, self-renewal ability, neurosphere formation, and stemness. METHODS: Through comprehensive sequencing analysis, we identified a compelling association between ginsenoside Rg5 and the ferroptosis pathway, which was further validated through subsequent experiments demonstrating its ability to activate this pathway. RESULTS: To elucidate the precise molecular targets affected by ginsenoside Rg5 in gliomas, we conducted an intersection analysis between differentially expressed genes obtained from sequencing and a database-predicted list of transcription factors and potential targets of ginsenoside Rg5. This rigorous approach led us to unequivocally confirm NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1) as a direct target of ginsenoside Rg5, a finding consistently supported by subsequent experimental investigations. Moreover, we uncovered NR3C1's capacity to transcriptionally regulate ferroptosis -related genes HSPB1 and NCOA4. Strikingly, ginsenoside Rg5 induced notable alterations in the expression levels of both HSPB1 (Heat Shock Protein Family B Member 1) and NCOA4 (Nuclear Receptor Coactivator 4). Finally, our intracranial xenograft assays served to reaffirm the inhibitory effect of ginsenoside Rg5 on the malignant progression of glioblastoma. CONCLUSION: These collective findings strongly suggest that ginsenoside Rg5 hampers glioblastoma progression by activating ferroptosis through NR3C1, which subsequently modulates HSPB1 and NCOA4. Importantly, this novel therapeutic direction holds promise for advancing the treatment of glioblastoma.

4.
Sensors (Basel) ; 24(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38610445

RESUMO

Cardiovascular diseases pose a long-term risk to human health. This study focuses on the rich-spectrum mechanical vibrations generated during cardiac activity. By combining Fourier series theory, we propose a multi-frequency vibration model for the heart, decomposing cardiac vibration into frequency bands and establishing a systematic interpretation for detecting multi-frequency cardiac vibrations. Based on this, we develop a small multi-frequency vibration sensor module based on flexible polyvinylidene fluoride (PVDF) films, which is capable of synchronously collecting ultra-low-frequency seismocardiography (ULF-SCG), seismocardiography (SCG), and phonocardiography (PCG) signals with high sensitivity. Comparative experiments validate the sensor's performance and we further develop an algorithm framework for feature extraction based on 1D-CNN models, achieving continuous recognition of multiple vibration features. Testing shows that the recognition coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE) of the 8 features are 0.95, 2.18 ms, and 4.89 ms, respectively, with an average prediction speed of 60.18 us/point, meeting the re-quirements for online monitoring while ensuring accuracy in extracting multiple feature points. Finally, integrating the vibration model, sensor, and feature extraction algorithm, we propose a dynamic monitoring system for multi-frequency cardiac vibration, which can be applied to portable monitoring devices for daily dynamic cardiac monitoring, providing a new approach for the early diagnosis and prevention of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Vibração , Humanos , Coração , Algoritmos , Fonocardiografia
5.
Ann Neurol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661228

RESUMO

OBJECTIVE: Exposure to heavy metals has been reported to be associated with impaired cognitive function, but the underlying mechanisms remain unclear. This pilot study aimed to identify key heavy metal elements associated with cognitive function and further explore the potential mediating role of metal-related DNA methylation. METHODS: Blood levels of arsenic, cadmium, lead, copper, manganese, and zinc and genome-wide DNA methylations were separately detected in peripheral blood in 155 older adults. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Least absolute shrinkage and selection operator penalized regression and Bayesian kernel machine regression were used to identify metals associated with cognitive function. An epigenome-wide association study examined the DNA methylation profile of the identified metal, and mediation analysis investigated its mediating role. RESULTS: The MMSE scores showed a significant decrease of 1.61 (95% confidence interval [CI]: -2.64, -0.59) with each 1 standard deviation increase in ln-transformed arsenic level; this association was significant in multiple-metal models and dominated the overall negative effect of 6 heavy metal mixture on cognitive function. Seventy-three differentially methylated positions were associated with blood arsenic (p < 1.0 × 10-5). The methylation levels at cg05226051 (annotated to TDRD3) and cg18886932 (annotated to GAL3ST3) mediated 24.8% and 25.5% of the association between blood arsenic and cognitive function, respectively (all p < 0.05). INTERPRETATION: Blood arsenic levels displayed a negative association with the cognitive function of older adults. This finding shows that arsenic-related DNA methylation alterations are critical partial mediators that may serve as potential biomarkers for further mechanism-related studies. ANN NEUROL 2024.

7.
J Ethnopharmacol ; 328: 118135, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38556139

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Clinacanthus nutans (Burm. f.) Lindau, a traditional herb renowned for its anti-tumor, antioxidant, and anti-inflammatory properties, has garnered considerable attention. Although its hepatoprotective effects have been described, there is still limited knowledge of its treatment of acute liver injury (ALI), and its mechanisms remain unclear. AIM OF THE STUDY: To assess the efficacy of Clinacanthus nutans in ALI and to identify the most effective fractions and their underlying mechanism of action. METHODS: Bioinformatics was employed to explore the underlying anti-hepatic injury mechanisms and active compounds of Clinacanthus nutans. The binding ability of schaftoside, a potential active ingredient in Clinacanthus nutans, to the core target nuclear factor E2-related factor 2 (Nrf2) was further determined by molecular docking. The role of schaftoside in improving histological abnormalities in the liver was observed by H&E and Masson's staining in an ALI model induced by CCl4. Serum and liver biochemical parameters were measured using AST, ALT and hydroxyproline kits. An Fe2+ kit, transmission electron microscopy, western blotting, RT-qPCR, and DCFH-DA were used to measure whether schaftoside reduces ferroptosis-induced ALI. Subsequently, specific siRNA knockdown of Nrf2 in AML12 cells was performed to further elucidate the mechanism by which schaftoside attenuates ferroptosis-induced ALI. RESULTS: Bioinformatics analysis and molecular docking showed that schaftoside is the principal compound from Clinacanthus nutans. Schaftoside was shown to diminish oxidative stress levels, attenuate liver fibrosis, and forestall ferroptosis. Deeper investigations revealed that schaftoside amplified Nrf2 expression and triggered the Nrf2/GPX4 pathway, thereby reversing mitochondrial aberrations triggered by lipid peroxidation, GPX4 depletion, and ferroptosis. CONCLUSION: The lead compound schaftoside counters ferroptosis through the Nrf2/GPX4 axis, providing insights into a novel molecular mechanism for treating ALI, thereby presenting an innovative therapeutic strategy for ferroptosis-induced ALI.


Assuntos
Acanthaceae , Ferroptose , Glicosídeos , Fator 2 Relacionado a NF-E2 , Simulação de Acoplamento Molecular , Fígado
8.
Neuroreport ; 35(7): 457-465, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526920

RESUMO

Modern medicine has unveiled that essential oil made from Aquilaria possesses sedative and hypnotic effects. Among the chemical components in Aquilaria, nerolidol, a natural sesquiterpene alcohol, has shown promising effects. This study aimed to unravel the potential of nerolidol in treating depression. Chronic unpredictable mild stress (CUMS) was utilized to induce depression-like behavior in mice, and open field test, sucrose preference, and tail suspension test was conducted. The impacts of nerolidol on the inflammatory response, microglial activation, and DNA methyltransferase 1 (DNMT1) were assessed. To study the regulatory role of DNMT1, lipopolysaccharide (LPS) was used to treat BV2 cells, followed by the evaluation of cell viability and DNMT1 level. Additionally, the influence of DNMT1 overexpression on BV2 cell activation was determined. Behavioral analysis revealed that nerolidol reduced depression-like behavior in mice. Nerolidol reduced the levels of inflammatory factors and microglial activation caused by CUMS. Nerolidol treatment was found to reduce DNMT1 levels in mouse brain tissue and it also decrease the LPS-induced increase in DNMT1 levels in BV2 cells. DNMT1 overexpression reversed the impacts of nerolidol on the inflammation response and cell activation. This study underscores the potential of nerolidol in reducing CUMS-induced depressive-like behavior and inhibiting microglial activation by downregulating DNMT1. These findings offer valuable insights into the potential of nerolidol as a therapeutic option for depression.


Assuntos
Depressão , Sesquiterpenos , Animais , Camundongos , Comportamento Animal , Depressão/tratamento farmacológico , Depressão/etiologia , Modelos Animais de Doenças , Hipocampo , Lipopolissacarídeos , Metiltransferases/metabolismo , Microglia , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Estresse Psicológico/complicações
9.
World J Clin Cases ; 12(4): 737-745, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38322685

RESUMO

BACKGROUND: As one of the fatal diseases with high incidence, lung cancer has seriously endangered public health and safety. Elderly patients usually have poor self-care and are more likely to show a series of psychological problems. AIM: To investigate the effectiveness of the initial check, information exchange, final accuracy check, reaction (IIFAR) information care model on the mental health status of elderly patients with lung cancer. METHODS: This study is a single-centre study. We randomly recruited 60 elderly patients with lung cancer who attended our hospital from January 2021 to January 2022. These elderly patients with lung cancer were randomly divided into two groups, with the control group taking the conventional propaganda and education and the observation group taking the IIFAR information care model based on the conventional care protocol. The differences in psychological distress, anxiety and depression, life quality, fatigue, and the locus of control in psychology were compared between these two groups, and the causes of psychological distress were analyzed. RESULTS: After the intervention, Distress Thermometer, Hospital Anxiety and Depression Scale (HADS) for anxiety and the HADS for depression, Revised Piper's Fatigue Scale, and Chance Health Locus of Control scores were lower in the observation group compared to the pre-intervention period in the same group and were significantly lower in the observation group compared to those of the control group (P < 0.05). After the intervention, Quality of Life Questionnaire Core 30 (QLQ-C30), Internal Health Locus of Control, and Powerful Others Health Locus of Control scores were significantly higher in the observation and the control groups compared to the pre-intervention period in their same group, and QLQ-C30 scores were significantly higher in the observation group compared to those of the control group (P < 0.05). CONCLUSION: The IIFAR information care model can help elderly patients with lung cancer by reducing their anxiety and depression, psychological distress, and fatigue, improving their tendencies on the locus of control in psychology, and enhancing their life qualities.

10.
Int J Obes (Lond) ; 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341506

RESUMO

OBJECTIVE: Fatty acids play a critical role in the proper functioning of the brain. This study investigated the effects of a high-fat (HF) diet on brain fatty acid profiles of offspring exposed to maternal gestational diabetes mellitus (GDM). METHODS: Insulin receptor antagonist (S961) and HF diet were used to establish the GDM animal model. Brain fatty acid profiles of the offspring mice were measured by gas chromatography at weaning and adulthood. Protein expressions of the fatty acid transport pathway Wnt3/ß-catenin and the target protein major facilitator superfamily domain-containing 2a (MFSD2a) were measured in the offspring brain by Western blot. RESULTS: Maternal GDM increased the body weight of male offspring (P < 0.05). In weaning offspring, factorial analysis showed that maternal GDM increased the monounsaturated fatty acid (MUFA) percentage of the weaning offspring's brain (P < 0.05). Maternal GDM decreased offspring brain arachidonic acid (AA), but HF diet increased brain linoleic acid (LA) (P < 0.05). Maternal GDM and HF diet reduced offspring brain docosahexaenoic acid (DHA), and the male offspring had higher DHA than the female offspring (P < 0.05). In adult offspring, factorial analysis showed that HF diet increased brain MUFA in offspring, and male offspring had higher brain MUFA than female offspring (P < 0.05). The HF diet increased brain LA in the offspring. Male offspring had higher level of AA than female offspring (P < 0.05). HF diet reduced DHA in the brains of female offspring. The brain protein expression of ß-catenin and MFSD2a in both weaning and adult female offspring was lower in the HF + GDM group than in the CON group (P < 0.05). CONCLUSIONS: Maternal GDM increased the susceptibility of male offspring to HF diet-induced obesity. HF diet-induced adverse brain fatty acid profiles in both male and female offspring exposed to GDM.

11.
Transl Psychiatry ; 14(1): 101, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374108

RESUMO

G protein-coupled receptor 55 (GPR55) has been thought to be a putative cannabinoid receptor. However, little is known about its functional role in cannabinoid action and substance use disorders. Here we report that GPR55 is predominantly found in glutamate neurons in the brain, and its activation reduces self-administration of cocaine and nicotine in rats and mice. Using RNAscope in situ hybridization, GPR55 mRNA was identified in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons, with no detection in midbrain dopamine (DA) neurons. Immunohistochemistry detected a GPR55-like signal in both wildtype and GPR55-knockout mice, suggesting non-specific staining. However, analysis using a fluorescent CB1/GPR55 ligand (T1117) in CB1-knockout mice confirmed GPR55 binding in glutamate neurons, not in midbrain DA neurons. Systemic administration of the GPR55 agonist O-1602 didnt impact ∆9-THC-induced analgesia, hypothermia and catalepsy, but significantly mitigated cocaine-enhanced brain-stimulation reward caused by optogenetic activation of midbrain DA neurons. O-1602 alone failed to alter extracellar DA, but elevated extracellular glutamate, in the nucleus accumbens. In addition, O-1602 also demonstrated inhibitory effects on cocaine or nicotine self-administration under low fixed-ratio and/or progressive-ratio reinforcement schedules in rats and wildtype mice, with no such effects observed in GPR55-knockout mice. Together, these findings suggest that GPR55 activation may functionally modulate drug-taking and drug-seeking behavior possibly via a glutamate-dependent mechanism, and therefore, GPR55 deserves further study as a new therapeutic target for treating substance use disorders.


Assuntos
Canabidiol , Cocaína , Receptores de Canabinoides , Transtornos Relacionados ao Uso de Substâncias , Animais , Camundongos , Ratos , Canabidiol/análogos & derivados , Cocaína/farmacologia , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Knockout , Nicotina/farmacologia , Preparações Farmacêuticas/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/metabolismo
12.
Food Funct ; 15(5): 2706-2718, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38376466

RESUMO

Dietary intake can modify the impact of metals on human health, and is also closely related to glucose metabolism in human bodies. However, research on their interaction is limited. We used data based on 1738 adults aged ≥20 years from the National Health and Nutrition Examination Survey 2011-2016. We combined linear regression and restricted cubic splines with Bayesian kernel machine regression (BKMR) to identify metals associated with each glucose metabolism index (P < 0.05 and the posterior inclusion probabilities of BKMR >0.5) in eight non-essential heavy metals (barium, cadmium, antimony, tungsten, uranium, arsenic, lead, and thallium) and glucose metabolism indexes [fasting plasma glucose (FPG), blood hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)]. We identified two pairs of metals associated with glucose metabolism indexes: cadmium and tungsten to HbA1c and barium and thallium to HOMA-IR. Then, the cross-validated kernel ensemble (CVEK) approach was applied to identify the specific nutrient group (nutrients) that interacted with the association. By using the CVEK model, we identified significant interactions between the energy-adjusted diet inflammatory index (E-DII) and cadmium, tungsten and barium (all P < 0.05); macro-nutrients and cadmium, tungsten and barium (all P < 0.05); minerals and cadmium, tungsten, barium and thallium (all P < 0.05); and A vitamins and thallium (P = 0.043). Furthermore, a lower E-DII, a lower intake of carbohydrates and phosphorus, and a higher consumption of magnesium seem to attenuate the positive association between metals and glucose metabolism indexes. Our finding identifying the nutrients that interact with non-essential heavy metals could provide a feasible nutritional guideline for the general population to protect against the adverse effects of non-essential heavy metals on glucose metabolism.


Assuntos
Cádmio , Metais Pesados , Adulto , Humanos , Inquéritos Nutricionais , Bário , Tálio , Tungstênio , Hemoglobinas Glicadas , Teorema de Bayes , Glucose
13.
Phytomedicine ; 126: 155445, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412666

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is the primary cause of end-stage renal disease (ESRD), and the therapeutic strategies for DN are limited. Notoginsenoside Fc (Fc), a novel saponin isolated from Panax Notoginseng (PNG), has been reported to alleviate vascular injury in diabetic rats. However, the protective effects of Fc on DN remain unclear. PURPOSE: To investigate the beneficial effects and mechanisms of Fc on DN. METHODS: Db/db mice were treated with 2.5, 5 and 10 mg·kg-1·d-1 of Fc for 8 weeks. High glucose (HG) induced mouse glomerular endothelial cells (GECs) were treated with 2.5, 5 and 10 µM of Fc for 24 h. RESULTS: Our data found that Fc ameliorated urinary microalbumin level, kidney dysfunction and histopathological damage in diabetic mice. Moreover, Fc alleviated the accumulation of oxidative stress, the collapse of mitochondrial membrane potential and the expression of mitochondrial fission proteins, such as Drp-1 and Fis1, while increased the expression of mitochondrial fusion protein Mfn2. Fc also decreased pyroptosis-related proteins levels, such as TXNIP, NLRP3, cleaved caspase-1, and GSDMD-NT, indicating that Fc ameliorated GECs pyroptosis. In addition, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) expression was increased in diabetic group, which was partially abrogated by Fc. Our data further proved that knockdown of HMGCS2 could restrain HG-induced GECs mitochondrial dysfunction and pyroptosis. These results indicated that the inhibitory effects of Fc on mitochondrial damage and pyroptosis were associated with the suppression of HMGCS2. CONCLUSION: Taken together, this study clearly demonstrated that Fc ameliorated GECs pyroptosis and mitochondrial dysfunction partly through regulating HMGCS2 pathway, which might provide a novel drug candidate for DN.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ginsenosídeos , Doenças Mitocondriais , Ratos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Células Endoteliais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Piroptose , Doenças Mitocondriais/metabolismo , Hidroximetilglutaril-CoA Sintase/metabolismo , Proteínas de Ciclo Celular/metabolismo
14.
Chin Med ; 19(1): 27, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365794

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) is a prevalent complication of diabetes and the leading cause of end-stage renal disease. Recent evidence suggests that total flavonoids of Astragalus (TFA) has promising effects on diabetes; however, its influence on DKD and the underlying mechanism remains unclear. METHODS: In this study, we induced the DKD model using streptozotocin (STZ) in male C57BL/6J mice and utilized glomerular endothelial cell (GEC) lines for in vitro investigations. We constructed a network pharmacology analysis to understand the mechanism of TFA in DKD. The mechanism of TFA action on DKD was investigated through Western blot analysis and multi-immunological methods. RESULTS: Our findings revealed that TFA significantly reduced levels of urinary albumin (ALB). Network pharmacology and intracellular pathway experiments indicated the crucial involvement of the PI3K/AKT signaling pathway in mediating these effects. In vitro experiments showed that TFA can preserve the integrity of the glomerular filtration barrier by inhibiting the expression of inflammatory factors TNF-alpha and IL-8, reducing oxidative stress. CONCLUSION: Our findings demonstrated that TFA can ameliorates the progression of DKD by ameliorating renal fibrosis and preserving the integrity of the kidney filtration barrier. These results provide pharmacological evidence supporting the use of TFA in the treatment of kidney diseases.

15.
Life Sci ; 340: 122437, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266813

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Xklp2 targeting protein (TPX2), a crucial oncogene exhibits high expression levels in various cancers including LUAD, may serve as a potential target for clinical intervention. Additionally, the growth of lung cancer is significantly influenced by the tumor microenvironment (TME). However, there have been no reports on experiments investigating TPX2 in tumor-infiltrating immune cells (TIICs) in LUAD. Therefore, we verified the effect of TPX2 on macrophage polarization both in vitro and in vivo. METHODS: We silenced TPX2 the gene in A549 cells and collected supernatants for macrophage culture. We then used flow cytometry and Western blot analysis to assess macrophage polarization. Additionally, we verified the expression of macrophage colony-stimulating factor (M-CSF), and CD163 by immunohistochemistry (IHC) in tissue specimens from LUAD patients. Finally, pathways related to TPX2's regulatory function in macrophage polarization were analyzed through whole genome sequencing, Western blotting, and immunofluorescence (IF). RESULTS: Silencing TPX2 can affect the ratio of CD80+ M1/CD163+ M2 and reduce the polarization of M0 macrophages to CD163+ M2 macrophages mainly by inhibiting the expression of M-CSF. In human LUAD tissues, the expression levels of TPX2, M-CSF and CD163 increased with the degree of differentiation. Silencing TPX2 inhibits the NF-κB signaling pathway, thereby reducing the expression of M-CSF, and affecting macrophage polarization. CONCLUSION: Silencing TPX2 can inhibit the expression of M-CSF by blocking the NF-κB signal, thereby reducing CD163+ M2 macrophage polarization. The TPX2/NF-κB/M-CSF signaling axis may be involved in regulating macrophage polarization.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , NF-kappa B/metabolismo , Fator Estimulador de Colônias de Macrófagos , Células Cultivadas , Macrófagos/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/patologia , Microambiente Tumoral , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo
16.
J Transl Med ; 22(1): 48, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216927

RESUMO

BACKGROUND: Muscle-invasive bladder cancer (MIBC) is a highly aggressive disease with a poor prognosis. B cells are crucial factors in tumor suppression, and tertiary lymphoid structures (TLSs) facilitate immune cell recruitment to the tumor microenvironment (TME). However, the function and mechanisms of tumor-infiltrating B cells and TLSs in MIBC need to be explored further. METHODS: We performed single-cell RNA sequencing analysis of 11,612 B cells and 55,392 T cells from 12 bladder cancer patients and found naïve B cells, proliferating B cells, plasma cells, interferon-stimulated B cells and germinal center-associated B cells, and described the phenotype, gene enrichment, cell-cell communication, biological processes. We utilized immunohistochemistry (IHC) and immunofluorescence (IF) to describe TLSs morphology in MIBC. RESULTS: The interferon-stimulated B-cell subtype (B-ISG15) and germinal center-associated B-cell subtypes (B-LMO2, B-STMN1) were significantly enriched in MIBC. TLSs in MIBC exhibited a distinct follicular structure characterized by a central region of B cells resembling a germinal center surrounded by T cells. CellChat analysis showed that CXCL13 + T cells play a pivotal role in recruiting CXCR5 + B cells. Cell migration experiments demonstrated the chemoattraction of CXCL13 toward CXCR5 + B cells. Importantly, the infiltration of the interferon-stimulated B-cell subtype and the presence of TLSs correlated with a more favorable prognosis in MIBC. CONCLUSIONS: The study revealed the heterogeneity of B-cell subtypes in MIBC and suggests a pivotal role of TLSs in MIBC outcomes. Our study provides novel insights that contribute to the precision treatment of MIBC.


Assuntos
Estruturas Linfoides Terciárias , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Linfócitos B , Prognóstico , Músculos/patologia , Interferons , Microambiente Tumoral
17.
Cell Mol Life Sci ; 81(1): 48, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236296

RESUMO

The MAP kinase ERK is important for neuronal plasticity underlying associative learning, yet specific molecular pathways for neuronal ERK activation are undetermined. RapGEF2 is a neuron-specific cAMP sensor that mediates ERK activation. We investigated whether it is required for cAMP-dependent ERK activation leading to other downstream neuronal signaling events occurring during associative learning, and if RapGEF2-dependent signaling impairments affect learned behavior. Camk2α-cre+/-::RapGEF2fl/fl mice with depletion of RapGEF2 in hippocampus and amygdala exhibit impairments in context- and cue-dependent fear conditioning linked to corresponding impairment in Egr1 induction in these two brain regions. Camk2α-cre+/-::RapGEF2fl/fl mice show decreased RapGEF2 expression in CA1 and dentate gyrus associated with abolition of pERK and Egr1, but not of c-Fos induction, following fear conditioning, impaired freezing to context after fear conditioning, and impaired cAMP-dependent long-term potentiation at perforant pathway and Schaffer collateral synapses in hippocampal slices ex vivo. RapGEF2 expression is largely eliminated in basolateral amygdala, also involved in fear memory, in Camk2α-cre+/-::RapGEF2fl/fl mice. Neither Egr1 nor c-fos induction in BLA after fear conditioning, nor cue-dependent fear learning, are affected by ablation of RapGEF2 in BLA. However, Egr1 induction (but not that of c-fos) in BLA is reduced after restraint stress-augmented fear conditioning, as is freezing to cue after restraint stress-augmented fear conditioning, in Camk2α-cre+/-::RapGEF2fl/fl mice. Cyclic AMP-dependent GEFs have been genetically associated as risk factors for schizophrenia, a disorder associated with cognitive deficits. Here we show a functional link between one of them, RapGEF2, and cognitive processes involved in associative learning in amygdala and hippocampus.


Assuntos
Medo , Genes Precoces , Fatores de Troca do Nucleotídeo Guanina , Memória , Transdução de Sinais , Animais , Camundongos , Proteína 1 de Resposta de Crescimento Precoce/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Proto-Oncogênicas c-fos
18.
Mol Genet Genomic Med ; 12(1): e2351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284448

RESUMO

BACKGROUND: To explore reasons for the failure of noninvasive prenatal test (NIPT) for cell-free fetal DNA (cffDNA) in maternal peripheral blood, and discuss appropriate treatment schemes after the failure of the test. METHODS: Altogether 41,136 pregnant women participated in NIPT. Blood samples were taken again from pregnant women who failed the first blood collection upon their informed consent. Prenatal genetic counseling or prenatal diagnosis was recommended for pregnant women with final NIPT failure. RESULTS: The first failure rate of NIPT was 0.737% (303/41136), and the reason for the failure was the low ratio of cffDNA in 135 (44.6%) of the 303 pregnant women. After the second or third blood sampling, the final failure rate was 0.182% (75/41136). The low ratio of cffDNA was the main reason for test failure in 42 (56.0%) of the 75 pregnant women who finally failed NIPT, among whom 44 (58.7%) had underlying diseases, including 21 (47.7%) with more than two coexisting underlying diseases. Only 27 (36.0%) of the 75 pregnant women with NIPT failure underwent interventional prenatal diagnosis. CONCLUSIONS: The main reason for NIPT failure was the low ratio of cffDNA. Postponing the gestational weeks of blood collection may improve the success rate. Resampling and retesting upon informed consent in pregnant women who failed the first test could improve the success rate. For pregnant women who finally failed NIPT, it is suggested strengthening the genetic counseling, prenatal examination, and ultrasound evaluation, and carry out interventional prenatal diagnosis if necessary.


Assuntos
Cuidado Pré-Natal , Diagnóstico Pré-Natal , Gravidez , Feminino , Humanos , Aconselhamento Genético , Feto , DNA/genética
19.
STAR Protoc ; 5(1): 102754, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096060

RESUMO

Characterization of isolated extracellular vesicles and particles (EVPs) is crucial for determining functions and biomarker potential. Here, we present a protocol to analyze size, number, morphology, and EVP protein cargo and to validate EVP proteins in both humans and mice. We describe steps for nanoparticle tracking analysis, transmission electron microscopy, single-EVP immunodetection, EVP proteomic mass spectrometry and bioinformatic analysis, and EVP protein validation by ExoELISA and western blot analysis. This allows for EVP cross-validation across different platforms. For complete details on the use and execution of this protocol, please refer to Hoshino et al.1.


Assuntos
Vesículas Extracelulares , Proteômica , Humanos , Animais , Camundongos , Western Blotting , Biologia Computacional , Espectrometria de Massas
20.
Plant J ; 117(1): 33-52, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37731059

RESUMO

Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.


Assuntos
Cromatina , Zea mays , Cromatina/genética , Zea mays/genética , Metilação de DNA , Montagem e Desmontagem da Cromatina/genética , Inativação Gênica , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...